13 Nisan 2010 Salı

Alet Tasarımı Yapan Kargalar


Alet Tasarımı Yapan Kargalar

Son yıllarda Güney Pasifik'teki Güney Kaledonya ormanlarında yaşayan kargaların olağanüstü yeteneklere sahip oldukları keşfedilmiştir. Bu kargalar ihtiyaçlarına uygun aleti tasarlayıp, ürettikten sonra avlanmaya başlamaktadırlar.

Loş ve nemli ağaç kabuklarının içinde saklanan larvaları saklandıkları yerden çıkarmak ancak Kaledonya kargalarının (Corvus moneduloides) üstesinden gelebilecekleri bir iştir. Bu iş için karga öncelikle ormanda uygun alet arayışına başlar. Bulduğu küçük bir dal parçasını gagasıyla tutup ağaç kovuğuna sokan karga, çubuğu bir sonda gibi kullanarak yavaş yavaş larvayı bulunduğu ufak delikten çıkarır. Ancak karga bazen daha zorlu durumlarla da karşı karşıya kalabilir. Bunun için de daha gelişmiş bir alet kullanır. Bölgede yetişen uzun ve tırtıklı yaprakları olan Pandanus bitkisi bu iş için adeta biçilmiş bir kaftandır. Ancak upuzun bir yaprak karganın pek de işine yaramaz. Bu yüzden karga bitkinin yaprağını ihtiyacına uygun uzunlukta keser. Bunu yaparken yaprağın bir tarafının da tırtıklı olmasına özellikle dikkat etmektedir. Artık avlanma aleti hazırdır. Karga çubuk şeklinde kestiği bu yaprağı ağaç kavuğunun içine sokup larvanın ona takılmasını sağlar. Aletin tırtıklı olması işini daha da kolaylaştırmaktadır. Ancak karganın çalışmaları bununla da bitmemektedir. Karga sonda tipi aletlerin yanısıra çengel tipi aletler de yapabilmektedir. Bunun için ince ve küçük ağaç dalları bularak önce bunların yapraklarını temizler. Sonra ince dalı bir uc undan gagasıyla çengel haline getirinceye kadar iyice büker. Böylece karga, sondanın işe yaramadığı zorlu durumlarda da avının peşini bırakmamaktadır. Karganın hayranlık uyandıran bu hüner gösterisi Allah'ın göklerde ve yerde yarattığı düzendeki mükemmelliğin apaçık delillerinden birisidir. Bu aletleri yapmayı kargaya ilham eden Allah'tır.

İlk Nefes Öncesi Hazırlıklar


Ceninin gelişimindeki her türlü aşama kontrol altında ve çok aşamalı, kusursuz bir plana uygun olarak gerçekleşmektedir.

Anne karnındaki bebek gelişimini devam ettirirken, anne normal hayatına devam eder. Vücudundaki tüm değişimler kendi kontrolü dışındadır. Bebeğin gelişimi ve hayata normal bir insan olarak gelebilmesi için gerekli tüm ayrıntıları Allah en mükemmel şekilde yaratmıştır. Böylece hem fetüs halindeki bebeğin yaşaması için gerekli her türlü ihtiyacı karşılanmış olur, hem de anne bebeği yaşatabilmek için ne yapması gerektiğini düşünmekten kurtulur.

Zaten düşünse de yapabileceği hiçbir şey yoktur. Mesela, fetüsün vücudundaki artık maddeleri kendi böbreklerine alıp temizlemek ve dışarı atmak, hiçbir annenin kendi başına yapabileceği bir iş değildir. Yeni bir insanın dünyaya gelebilmesi için tüm ihtiyaçları ve sistemleri en güzel biçimde tespit ve inşa eden Allah'tır.

Şimdi bebeğin doğum öncesi son dönemlerindeki hazırlıklara bir göz atalım.

İlk Nefes

Bebek için en önemli şey nefes almaktır. O ana kadar henüz hava ile tanışmamış ciğerlerin, havayla doldurulup nefesin geri verilmesi gereklidir. Doğduktan sonraki ilk ana kadar hiç nefes almayan ciğerler, ilk nefesi bir anda, oldukça normal bir şekilde alıp vermeye başlarlar. Çünkü bebek, o ana kadar annenin kanından karşıladığı oksijeni artık kendi ciğerleri vasıtasıyla havadan almak zorundadır.

Bebeği doğduğu an herşeyi ile hazır olarak yaratan Allah akciğerlerin oluşumunda da gerekli hazırlıkların tamamlanmasını sağlamıştır. Akciğerlerin hazırlanması için göğüs kafesiyle karnı birleştiren diyaframa görev düşer. Diyafram altıncı aya doğru çalışmaya başlar. İlk önceleri çok kısa zamanlarda, bir saatte birkaç defa genişler ve büzülür, ama bunu doğduktan sonra sürekli yapacaktır.

Hazırlıklar Tamamlanıyor

Cenin giderek dış dünyaya hazır hale gelirken, organlar arasında olağanüstü bir işbölümü yapılır. Yapılacak işler ve gelişmeler dünyanın şartlarına göre belirlenmiştir. Anne karnında kullanılmayan gözler dünyadaki ışık şiddetine, kulaklar da dünyadaki seslerin özelliklerine göre inşa edilir. Aynı şekilde, mide ve diğer sindirim organları dünyadaki besin maddeleriyle uygun çalışabilecek bir fizyolojik sistemle donatılır. Sindirim sisteminde görev alan hücreler hiç tanımadıkları yiyecekleri analiz etmeye ayarlı bir şekilde programlıdır. Karbonhidratları, proteinleri, yağları analiz etme yeteneğinin yanısıra hangisinin hangi organ için gerekli olduğunu bilebilecek ve bu besinlerin vücudun diğer hücrelerine gönderilmesini sağlayacak bir programa sahiptirler. Cenin bu yönüyle planlı ve programlı bir şekilde dış dünyaya hazırlanmaktadır. Burada son derece şaşırtıcı olan nokta, yeni bir insanın bedenini oluşturan bu organların ve hücrelerin, hiç görmedikleri, hiç duymadıkları, hiç şahit olmadıkları bir ortam için hazırlık yapmalarıdır. Bu organlar ve hücreler annenin bedeninden ayrıldıktan sonra kendilerini nasıl bir ortamın beklediğini bilir şekilde bir gelişim göstermektedirler. Elbette bunu hücrelerin kendi "ileri görüşlülükleri" ile başardıklarını iddia etmek mümkün değildir. Bebeği oluşturan hücrelerin bu şuurlu ve bilinçli hazırlıkları, düşünülmesi gereken önemli bir yaratılış delilidir.

Anne karnındaki son aylarında cenin önemli oranda kilo almaya başlar. Bunun nedeni yağ dokusunun oluşmaya başlamasıdır. Kahverengi özel bir yapıya sahip olan bu yağ tabakasını üreten hücreler, ceninin özellikle belirli bölgelerinde, ensesinde, böbreklerinin çevresinde ve göğüs kemiğinin arkasında bu tabakanın oluşmasını sağlarlar. Bu özel yağ tabakalarının görevi doğduktan sonraki ilk aylarda bebeğin vücut ısısını yüksek tutmaktır. Ayrıca bu yağlar yedek besin görevini de görürler. Bu da, söz konusu yağ tabakalarını üreten hücrelerin, kendilerine ilham edilen görevleri kusursuzca yerine getirdiklerinin bir başka delilidir.

Bu arada beyaz yağlar da ince bir tabaka halinde oluşmaya başlarlar. Böylece yağ, ceninin derisinin altını bir tabaka halinde sarar. Derialtı yağ tabakalarının yanında bir de deriyi içinde bulunan sıvıdan koruyan bir başka yağın üretimi de yine deri hücreleri tarafından yapılır. Bu yağların oluşumu da son derece önemlidir, çünkü deri ile su arasına yağ tabakası girecek ve suyun cenin üzerindeki olumsuz etkisini ortadan kaldıracaktır.

Ceninin daha önceki dönemlerinde annenin kanındaki savunma sistemi elemanlarının bebeğin kanına geçişine izin verilmez. Çünkü bu elemanlar bebeği yabancı bir doku olarak görüp, onu yok edebilirler. Ancak dokuzuncu aya gelindiğinde bu durum bir anda değişir ve annenin kanındaki savunma hücreleri olan antikorlar plasenta aracılığıyla cenine geçerler.

Bunun nedeni incelendiğinde son derece çarpıcı bir gerçekle karşılaşırız. Doğumdan sonraki ilk altı ay boyunca bebeğin bağışıklık hücreleri oluşmayacaktır. Ama bebek kendini dünyadaki mikroplardan koruyacak antikorlara ihtiyaç duyacaktır. İşte son ay, ceninin kanına geçişine izin verilen anneye ait antikorlar bebeğin ilk dünyaya geldiğinde bulaşıcı hastalıklara yakalanmasını önlemek için hazır olacaktır. İlerleyen aylarda bebeğin savunma sistemi kendi antikorlarını oluşturmaya başlayınca, bu antikorlar fonksiyonlarını durduracaklardır.

Görüldüğü gibi bir insanın oluşması için her ay, her gün, her dakika gerçekleşmesi gereken detaylar ince ince hesaplanmıştır. Ceninin gelişimindeki her türlü aşama kontrol altında ve çok aşamalı, kusursuz bir plana uygun olarak gerçekleşmektedir. Üstelik her insan cenin halindeyken bu kontrolden geçerek gelişmiş ve bugünkü haline gelmiştir.

Böceklere Özel Solunum Sistemi


Sinekler, kendi büyüklükleri ile karşılaştırıldığında son derece yüksek hızlarda uçar. Yusufçukların uçuş hızı saatte 40 km.'ye kadar çıkabilir. Onlardan daha küçük olan at sineklerinin uçuş hızı ise saatte 50 km.ye erişebilmektedir. Bu hızlar, bir insanın saatte bir kaç bin kilometre hızla uçmasıyla eşdeğerdir. İnsanlar bu hıza sadece jet uçakları sayesinde ulaşabilirler. Ancak jet uçaklarının boyutunun da oldukça büyük olduğu düşünülürse, sineklerin bu uçaklardan bile daha hızlı uçtukları anlaşılır.

Jetler sahip oldukları yüksek hız motorlarını çalıştırabilmek için çok özel yakıtlar kullanır. Sineklerin uçuşu da yine yüksek bir enerji gerektirir. Dahası, bu enerjiyi yakmak için bol miktarda oksijene ihtiyaçları vardır. İşte bu yüksek oksijen gereksinimi, sineklerin ve diğer böceklerin vücuduna yerleştirilen olağanüstü bir solunum sistemiyle karşılanır.

Bu solunum sistemi, bizimkinden çok farklıdır. Biz havayı akciğerlerimize çekeriz. Oksijen burada kana karışır, sonra da kan yoluyla tüm vücuda dağılır. Ama sineklerdeki oksijen gereksinimi o kadar fazladır ki, oksijenin kan yoluyla hücrelere gitmesini bekleyecek zaman yoktur. Bu nedenle çok özel bir sistem tasarlanmıştır. Hava, sinek vücudunun farklı bölgelerine kılcal kanallar yoluyla dağılır. Aynı vücudu saran damar sistemi gibi, çok sayıda kanala ayrılan bir de hava sistemi vardır. Bu sayede uçuş kaslarını oluşturan hücreler oksijeni doğrudan bu kanallardan alır. Bu sistem aynı zamanda saniyede 1000 devir gibi yüksek rakamlarla çalışan kasların soğutulmasını da sağlamaktadır.

Bu sistemin çok açık bir yaratılış örneği olduğu ise açıktır. Bu denli hassas bir tasarım, hiçbir tesadüfi süreçle açıklanamaz. Bu sistemin evrimin iddia ettiği gibi kademeli olarak gelişmesi de imkansızdır. Çünkü hava kanalları tam olarak kurulup çalışmadığı sürece, ara aşamalar canlıya avantaj sağlamayacak, aksine solunum sistemini verimsiz hale getirip ona zarar verecektir.

Baştan beridir incelediğimiz tüm bu sistemler, sinekler gibi belki fazla önemsemediğimiz canlılarda dahi olağanüstü bir tasarım olduğunu göstermektedir. Tek bir sinek dahi, Allah'ın yaratışındaki kusursuzluğu gösteren bir mucizedir. Öte yandan, Darwinizm'in ortaya attığı hayali "evrim süreci" ise, bu sineğin tek bir sistemini dahi oluşturmaktan uzaktır.

Kuş Tüylerinin Yapısı


Kuşların sürüngenlerden evrimleştiğini iddia eden evrim teorisi, bu iki ayrı canlı sınıfı arasındaki dev farkları asla açıklayamamaktadır. Kuşlar; içi boş hafif kemiklerden oluşan iskelet yapıları, kendilerine özgü akciğer sistemleri, sıcakkanlı metabolizmaları gibi özellikleriyle sürüngenlerden çok farklıdır. Kuşlarla sürüngenlerin arasına aşılmaz bir uçurum koyan bir başka özellik ise, tamamen kuşlara has bir yapı olan tüylerdir.

Tüyler kuşları bu kadar ilginç kılan estetik unsurlardan en önemlisidir. "Tüy gibi hafif" sözü tüyün o zarif yapısındaki mükemmelliği açıklar niteliktedir.

Temelde protein yapısına sahip olan tüyler keratin adı verilen bir maddeden yapılmıştır. Keratin, derinin alt tabakalarındaki yaşlı hücrelerin besin ve oksijen kaynaklarından uzaklaşarak ölmesi ve yerlerini genç hücrelere terk etmesi sonucu oluşan sert ve dayanıklı bir maddedir.

Kuş tüylerindeki tasarım hiçbir evrimsel süreçle açıklanamayacak kadar komplekstir. Ünlü kuş bilimci Alan Feduccia, "tüylerin her özelliği aerodinamik fonksiyona sahiptir. Hafiftirler, kaldırma kuvvetleri vardır ve kolaylıkla eski biçimlerine dönebilirler" der. Feduccia, evrim teorisinin çaresizliğini ise şöyle kabul eder:

Uçmak için böylesine tasarlanmış bir organın, nasıl olup da ilk başta başka bir amaca yönelik olarak ortaya çıktığını anlayamıyorum.(Douglas Palmer, "Learning to Fly" (Review of The Origin of and Evolution of Birds by Alan Feduccia, Yale University Press, 1996), New Scientist, sayı 153, Mart 1997, s. 44. )

Tüylerdeki bu tasarım, Charles Darwin'i de çok düşündürmüş, hatta tavus kuşu tüylerindeki mükemmel estetik kendi ifadesiyle Darwin'i "hasta etmiş"ti. Darwin, arkadaşı Asa Gray'e yazdığı 3 Nisan 1860 tarihli mektupta "gözü düşünmek çoğu zaman beni teorimden soğuttu. Ama kendimi zamanla bu probleme alıştırdım" dedikten sonra şöyle devam ediyordu:

Şimdilerde ise doğadaki bazı belirgin yapılar beni çok fazla rahatsız ediyor. Örneğin bir tavus kuşunun tüylerini görmek, beni neredeyse hasta ediyor. (Norman Macbeth, Darwin Retried: An Appeal to Reason, Boston, Gambit, 1971, s. 101.)

Tüycükler Ve Çengeller

Eğer bir kuş tüyünü mikroskop altına alır ve incelersek, karşımıza olağanüstü bir tasarım çıkar. Tüylerin ortasında hepimizin bildiği uzun ve sert bir boru vardır. Bu borunun her iki tarafından yüzlerce tüy çıkar. Boyları ve yumuşaklıkları farklı olan bu tüyler kuşa aerodinamik özellik kazandırır. Ancak daha da ilginç olanı, bu tüylerin herbirinin üzerinde de, "tüycük" denilen ve gözle görülemeyecek kadar küçük olan çok daha küçük tüylerin bulunmasıdır. Bu tüycüklerin üzerinde ise "çengel" adı verilen minik kancalar vardır. Bu kancalar sayesinde her tüycük birbirine sanki bir fermuar gibi tutunur. Bu muhteşem yaratılışı daha yakından görmek için turna kuşunun tüylerinin yalnızca birisini ele alalım. Bu tek tüyün üzerinde, tüy borusunun her iki yanında uzanan 650 tane incecik tüy vardır. Bunların her birinde ise 600 adet karşılıklı tüycük bulunur. Bu tüycüklerin her biri ise, 390 tane çengelle birbirlerine bağlanır. Çengeller bir fermuarın iki tarafı gibi birbirine kenetlenmiştir. Birbirine çengellerle kenetlenen tüycükler, o kadar bitişiktir ki, duman üflendiği takdirde bile aralarından geçemez. Çengeller herhangi bir şekilde birbirinden ayrılırsa, kuşun bir silkinmesi veya daha ağır hallerde gagasıyla tüylerini düzeltmesi tüylerin eski haline dönmesi için yeterlidir.

Kuşlar hayatlarını devam ettirebilmek için tüylerini daima temiz, bakımlı ve her an kullanıma hazır tutmak zorundadır. Tüylerin bakımı için kuyruklarının dibinde bulunan yağ keselerini kullanır. Gagalarıyla bu yağdan bir miktar alarak, tüylerini temizler ve parlatır. Bu yağ, yüzücü kuşlarda, suyun içinde veya yağmur altındayken suyun deriye ulaşmasına engel olur.

Dahası kuşlar tüylerini kabartarak, soğuk havalarda vücut ısılarının düşmesini engeller. Sıcak havalarda ise tüylerini vücutlarına yapıştırarak, vücutlarının serin kalmasını sağlar. (Hakan Durmuş, "Bir Tüyün Gelişmesi", Bilim ve Teknik, Kasım 1991, s. 34.)

Tüy Tipleri

Vücudun çeşitli yerlerinde bulunan tüylerin her birinin görevi farklıdır. Kuşun karnındaki tüyle kanat ve kuyruk tüyleri birbirinden farklı özelliklere sahiptir. Büyük tüylerden meydana gelen kuyruk tüyleri dümen ve fren görevini yerine getirir. Kanat tüyleri ise, kanat çırpma esnasında açılarak yüzeyi genişletecek ve kaldırma kuvvetini artıracak bir yapıdadır. Kuşun kanadını aşağı doğru çırpması sırasında, tüyler birbirlerine yakın duruma gelerek, aralarından hava sızması engellenir. Kanatların yukarıya doğru kalkışı esnasında ise tüyler iyice açılarak aralarından havanın geçmesine elverişli bir pozisyon alır. (Hakan Durmuş, "Bir Tüyün Gelişmesi", Bilim ve Teknik, s. 34-35) Kuşlar, uçabilme yeteneklerini koruyabilmek için belirli dönemlerde tüy döker. Yıpranmış ya da yırtılmış büyük tüyler, görevlerini tam olarak yerine getiremedikleri için hızla yenilenir.

Kanatlardaki Sanat

Tüylerin işlevleri çok çeşitlidir. Kanatlarda bulunan telekler, hayvanın uçmasına yarar.

Kuyruğu oluşturan kuyruk teleği ise, bir dümen görevi görür ve kuşun yere konarken fren yapmasını sağlar. Baş, gövde ve kanatlar üzerindeki tüyler kuşları suya ve soğuğa karşı korur.

Ayrıca kuşun havanın içinde süzülmesini de kolaylaştırır. Kanattaki kıvrım sebebiyle, hava tarafından uygulanan basınç üst yüzeyde daha zayıftır, bu da kuşun yükselmesini sağlar.

Eğer kanat fazla eğimli ise, hava akımının üst kısma uyguladığı artan basınç, aşağıya doğru bir güç oluşturur. Böylece kuş irtifa kaybeder.

Albatros uzun ve dar kanatları sayesinde okyanusların üzerinde uçabilir. Doğan ise geniş kanatları sayesinde sıcak hava akımlarından kolaylıkla yararlanabilir. Bunun yanınıda keçicağan kuşunun dalgalı kanatları onun çok hızlı uçmasını sağlar. Uçucu kuşların uzun süre havada kalabilmelerini sağlayan şey, kanatlarındaki dalgalı yapıdır.

Kuşların çoğu uçabilir, fakat hepsi aynı şekilde hareket etmez. Bazıları o kadar iyi birer uçucudur ki neredeyse yerin hemen üzerinde uçabilir. Kanatların biçimi ise bu uçuş tirleriyle bağlantılıdır.

En Küçük Hataya Yer Olmayan Bir Sistem: Kanın Phtılaşması


Bir yeriniz kesildiğinde ya da eski bir yaranız kanadığında, zaman içinde kanamanın duracağını bilirsiniz. Kanayan yerde bir pıhtı oluşacak, bu pıhtı zamanla sertleşecek ve yara iyileşecektir. Bu sizin için basit ve olağan olabilir. Oysa, biyokimyacılar yaptıkları araştırmalarla bunun oldukça karmaşık bir sistemin işleyişinin sonucu olduğunu ortaya çıkardılar. (Michael Behe, Darwin's Black Box, New York: Free Press, 1996, s. 79-97.) Bu sistemin parçalarından herhangi birinin eksilmesi veya zarar görmesi sistemi işlemez kılacaktır.

Kan doğru yerde, doğru zamanda pıhtılaşmalı ve şartlar normale döndüğünde pıhtı ortadan kalkmalıdır. Sistem en küçük ayrıntıya varana dek kusursuz bir biçimde çalışmalıdır.

Eğer bir kanama söz konusu ise, canlının kan kaybından ölmemesi için pıhtının hemen meydana gelmesi gerekir. Ayrıca, pıhtının yaranın üzerinde boylu boyunca oluşması ve en önemlisi de sadece yaranın üzerinde kalması gereklidir. Yoksa canlının tüm kanı pıhtılaşarak sertleşecek ve onu öldürecektir. Bu nedenle kanın pıhtılaşması sıkı bir denetim altında tutulmalı ve pıhtı doğru zamanda doğru yerde oluşmalıdır.

Kemik iliği hücrelerinin en küçük temsilcisi olan kan plakçıkları ya da trombositler vazgeçilmez bir özelliğe sahiptir. Bu hücreler, kanın pıhtılaşmasındaki ana unsurdur. Von Willebrand faktörü adlı bir protein, kanda dolaşıp durmakta olan trombositlerin kaza yerini geçmemelerini sağlar. Kaza yerinde takılı kalan trombositler, o anda diğer trombositleri de olay yerine getiren bir madde salgılar. Bu hücreler daha sonra hep birlikte açık yarayı kapatır. Trombositler, görevlerini yerine getirdikten sonra ölür. Onların, kendilerini feda etmeleri, kan pıhtılaşma sisteminin yalnızca bir parçasıdır.

Kan pıhtılaşmasını sağlayan bir diğer protein de trombindir. Bu madde yalnızca açık bir yaranın olduğu yerlerde üretilir. Bu üretim ne az ne de fazla olmalıdır. Üstelik üretim, tam zamanında yapılmalı ve yine tam zamanında durdurulmalıdır. Şu ana değin trombin üretiminde rol alan ve tamamı "enzim" olarak adlandırılan yirmiden fazla vücut kimyasalı tanımlanmıştır. Bu enzimler, kendi üretimlerini durdurabilir ya da başlatabilir. Süreç öylesine bir denetim altındadır ki, trombin ancak tam bir doku yaralanması söz konusu olduğunda oluşur. Vücutta pıhtılaşma için gerekli olan tüm enzimler yeterli miktara ulaşır ulaşmaz, yapısal maddesi protein olan uzun iplikçikler oluşturulur. Bu iplikçiklerin adı fibrinojendir. Kısa zamanda fibrinojen iplikçiklerinden bir ağ oluşturulur. Bu ağ kanın dışarı akışının olduğu yerde kurulur. Diğer yandan ise kandaki trombositler bu ağa takılarak birikir. Bu birikim yoğunlaşınca bir tıkaç vazifesi görerek kanamanın durmasını sağlayacaktır. İşte pıhtı dediğimiz şey de bu yığılmayla oluşan tıkaçtır.

Yara tamamen iyileşince ise kan pıhtısı çözülür.

Bir kan pıhtısının oluşması, pıhtının sınırlarının belirlenmesi, oluşan pıhtının güçlendirilmesi veya ortadan kaldırılmasını sağlayan sistem indirgenemez kompleksliğe sahiptir. Kanın pıhtılaşması, bir parçanın diğer bir parçayı harekete geçirmesi şeklinde ortaya çıkan bir olaylar zinciridir.

Sistem en küçük ayrıntıya varana dek kusursuz bir biçimde çalışır.

Eğer bu mükemmel işleyen sistemde en ufak bir aksaklık olsaydı ne olurdu? Mesela yara olmadığı halde kanda pıhtılaşma olsaydı? Ya da yaranın etrafında oluşan pıhtı yerinden rahatlıkla ayrılsaydı? Bu soruların tek bir cevabı vardır: Böyle bir durumda kalp, akciğer veya beyin gibi hayati organlara giden yollar pıhtı tıkaçlarıyla tıkanırdı. Bu ise kaçınılmaz olarak ölümle sonuçlanırdı.

Bu gerçek de bizlere bir kez daha göstermektedir ki, insan vücudu kusursuzca tasarlanmıştır. Sadece kanın pıhtılaşma sisteminin bile rastlantılarla ve evrim teorisinin iddia ettiği "kademeli gelişim" varsayımıyla açıklanması imkansızdır. Her detayı ayrı bir plan ve hesap ürünü olan bu sistem, yaratılışın mükemmelliğini gözler önüne sermektedir. Bizi yaratıp bu dünyaya yerleştirmiş olan Allah, hayatımız boyunca karşılaşacağımız küçük, büyük her türlü yaralanmaya karşı, bedenimizi bu sistemle birlikte yaratmıştır.

Kanın pıhtılaşması, sadece gözle görülür yaralar için değil, bedenimizde her gün sürekli gerçekleşen kılcal damar parçalanmalarının tamiri için de çok önemlidir. Siz fark etmezsiniz, ama gerçekte gün boyunca sürekli küçük iç kanamalar geçirirsiniz. Kolunuzu kapının kenarına çarptığınızda ya da bir koltuğa sertçe oturduğunuzda, yüzlerce küçük kılcal damarınız parçalanır. Bu parçalanma sonucunda oluşan iç kanama, pıhtılaşma sistemi sayesinde hemen durdurulur, daha sonra da vücut aynı kılcal damarları yeniden inşa eder. Eğer çarpma biraz şiddetliyse, pıhtılaşma öncesindeki iç kanama da biraz daha şiddetli olur ve bu yüzden çarptığınız yerde bir "morarma" oluşur. Kandaki bu pıhtılaşma sisteminden mahrum olan bir insanın, hayatı boyunca en ufak bir darbeden korunması, ve adeta pamuk içinde yaşatılması gerekecektir. Nitekim kanlarındaki pıhtılaşma sistemi kusurlu olan "hemofili" hastaları, bu şekilde ömür sürerler. İleri derecede hemofili hastaları genellikle fazla uzun yaşayamazlar. Yolda yürürken tökezleyip düşmeleriyle oluşan bir iç kanama bile, hayatlarını sona erdirmek için yeterlidir. Bu gerçek karşısında her insanın kendi bedenindeki yaratılış mucizesi üzerinde düşünmesi ve bu bedeni kusursuzca yaratmış olan Allah'a şükredici olması gerekir. Bizim tek bir sistemini, hatta tek bir hücresini dahi üretmekten aciz olduğumuz bu beden, Allah'ın bizlere bir lütfudur.

Bitkiler Nasıl Görür Nasıl İşitir?


Gözleri olmayan bir bitki, ışığa karşı nasıl insanlardan daha duyarlı olabilir?

Bir bitki; beyni, sinir sistemi, hafızası ve idrak gücü olmamasına rağmen dokunma tatma gibi duyularını nasıl kullanır?

Bitkiler hakkında ne biliyorsunuz diye sorulsa birçok insan, lise döneminde öğrendiği fotosentez işlemini hatırlayacaktır. Oysa bitkilerin fotosentez işleminden başka insanların bilmediği daha birçok mucizevi yönü vardır.

Bitkilerin yapısını incelediğimizde dikkat çekici sistemlerle karşılaşırız. Bu sistemlerin en önemlilerinden biri, bitkilerin içindeki tepki mekanizmalarıdır. Dışarıdan bakınca ne ağzı, ne gözü, ne de bir sinir sistemi olan bitkiler, bir insan gibi görme, işitme, tat alma ve dokunma duyularını kullanarak çoğu zaman insanlardan bile hassas olabilmektedirler.

Bitkilerin Görme Yeteneğine Neden İhtiyaçları Vardır?

Bitkilerin bizim gibi gözleri yoktur, ama bizim gördüğümüzden daha fazlasını görürler. Çünkü onların ışığa duyarlı bileşiklerden oluşmuş proteinleri vardır. Bu sayede bizim gördüğümüz ve göremediğimiz bütün dalga boylarını algılarlar. Hatta ışığa karşı duyarlılıkları insan gözünden bile daha fazladır.

Bitkilerin görme yeteneğine neden ihtiyaç duydukları ise önemli bir sorudur. Bitkilerin büyümek ve hayatta kalmak için ışığa ihtiyaçları olduğu için görme yeteneğine ihtiyaçları vardır. Bunun için de adeta gözleri var da ışığı görüyormuşlar gibi ışık yönünde filiz verir, büyümelerini ışık yönünde sürdürürler. Hatta gün boyu güneşi takip eden ayçiçeklerine bu sebeple birçok yörede günebakan ismi verilmiştir.

Bitkiler kendilerine verilmiş görme yeteneği sayesinde ışığın yoğunluğu, kalitesi, yönü ve periyodu gibi koşulları tespit ederler. Bitkinin bir günlük hayat düzeni kendini ışığa göre kuran bir "iç saat"in kontrolündedir.

Bu aşamada neler olduğunu şöyle özetleyebiliriz: Bitkide ışığı algılamakla görevli iki protein ailesi bulunur. Bu iki aileden biri, beş farklı çeşidi olan "fitokrom", diğeri ise iki farklı çeşidiyle "kriptokrom" adlı proteinlerdir. Bu proteinler aynı zamanda ışığı algılayabilen birer ışık reseptörüdürler. Reseptörler bitkinin içindeki saati, ışığın her an yaptığı değişikliklere göre kurmakla görevlidirler. Böylece reseptörler yardımıyla bitkinin gün içerisindeki hareketleri belirlenmiş olur.

2000'li Yıllarda Keşfedilen Mucize: Bitkilerde Tatma Duyusu

Bitkiler sadece güneş ışığıyla yaşayamazlar; topraktan bazı besinleri de almaları gerekir. Tat duyusu, topraktan mineral ve besinleri alan bitki kökleri için çok önemlidir. Arabidopsis (tere otu) adlı bitkide yapılan araştırmalarda, bir genin nitrat ve amonyum tuzlarının bol olarak bulunduğu yerleri tespit ettiği ortaya çıkarılmıştır. Bu gen sayesinde kökler gelişigüzel değil, besin yönünde gelişerek bilinçli bir hareket sergilemektedir. Nitratları tespit eden bu gen, ANR1'dir.

Bu gen dışında, Teksas Üniversitesi'nde yapılan başka bir araştırmada "apiraz" adlı bir enzim daha keşfedilmiştir. Kök yüzeyinde bulunan bu enzim, mantar gibi toprağa karışmış mikroorganizmaların ürettiği ATP'yi (adenozin trifosfat) tadabilmektedir. ATP molekülü doğada her zaman hazır olan kısa süreli bir enerji rezervidir. Apiraz, bitkinin bu molekülü alıp besine dönüştürmesini daha sonra da emmesini sağlar. Bitkilerin bir çöpçü gibi hücre dışındaki ATP'yi toplayıp kullanılır hale getirmesi 2000'li yılların başında keşfedilmiş bir mucizedir.

Dokunma Duyusu

Tatma duyusu gibi dokunma duyusu da bitkilerde çok sık rastladığımız algılardandır. Son yapılan araştırmalarda neredeyse bütün bitkilerin dokunma duyusuna sahip oldukları ortaya çıkmıştır. Örneğin;

Venüs gibi etçil bitkiler, üzerlerine konan böceği bir anda yakalarlar.

Mimoza, en hafif dokunuşta bile ince yapraklarını aşağı doğru indirir.

Bezelye ve fasulye gibi tırmanıcı bitkiler ise, hassas dokunma duyuları sayesinde filizlerini sağlam desteklerin etrafına sararlar.

Bitkiler genelde yapraklara büyük zarar verebilecek rüzgarın şiddetine karşı da dokunma duyusunu kullanırlar. Rüzgar altında kalan bitkiler dokularını sertleştirerek tepki verir ve böylece şiddetli rüzgarlarda kırılmaktan kurtulurlar. Araştırmacılar, dokunma duyusunun güçlendirilmiş doku üretimine nasıl yol açtığına halen cevap bulamamaktadırlar.

Bir bitkinin yaşayabilmek için ihtiyacı olan tüm özelliklere son derece kompleks sistemler sayesinde sahip olması, tek bir bitkinin tek bir yaprağının dahi tesadüfen oluşamayacağını görmek ve kavramak için yeterlidir. Bitki hücreleri, beyni, eli, gözü, şuuru ve bilgisi olmayan gözle görülemeyecek kadar küçük varlıklardır. Bu varlıkların, "Rüzgara karşı bitkiyi nasıl kurtarabiliriz?" diye düşünüp bir yöntem geliştirmeleri imkansızdır. Üstelik bu, iç içe geçmiş ve domino taşlarının birbirini yıkması gibi birbirini aktif hale getiren parçalardan oluşmuş bir sistemdir. Bu sistemi ne hücreler kendi akıl ve iradeleriyle oluşturabilirler, ne de tesadüfler böyle kusursuz bir plan ve tasarım yapabilirler. Tüm bunlar, sonsuz bir ilim ve akıl sahibi olan Allah'ın varlığının delillerinden yalnızca birkaçıdır.

İşitme Duyusu Sayesinde Bitkilerin Verimleri Artıyor

Başta North Carolina Wake Forest Üniversitesi olmak üzere çeşitli merkezlerde yapılan araştırmaların sonucunda, bitkilerin belirli bir ses frekansını veya titreşimi algılayabildikleri yönünde kanaatler oluşmuştur. Örneğin, Wake Forest'da yapılan bir deneyde, normal filizlenme oranı %20 olan turp tohumlarının, belirli bir frekanstaki sese uzun süre tabi tutulduklarında, filizlenme oranlarının %80-90 civarında arttığı görülmüştür. Araştırmacılar, bitkinin boyunun uzaması ve tohumun filizlenmesinde aracılık eden "giberellik asit" adlı bitki hormonunun, "işitmeden" de sorumlu olduğunu düşünmektedirler.

Bu aşamada unutmamamız gereken bir nokta vardır. Bitkilerin beyni ya da sinir sistemi yoktur. Bir insan bir nesneye dokunduğunda, onu gördüğünde veya tattığında sinir sisteminde ve beyinde belirli mesajlaşmalar ve komutlar serisi devreye girer. Hafıza, idrak gibi unsurların da katılmasıyla birlikte bilinçli bir hareket için karar alınır. Oysa bitkilerin böyle bir sinir sistemleri, beyinleri, idrak ve hafıza güçleri yoktur. Buna rağmen, son derece bilinçli davranışlara sahiptirler. Adeta görüyorlarmış gibi belli bir yöne dönmekte, dokunuyorlarmış gibi kendilerine en uygun zemini bulabilmekte veya tat alabiliyorlarmış gibi topraktaki birçok madde içinden kendilerine yarayanları seçebilmektedirler. Dışarıdan bakınca bilinçli yapıldığı görülen bu hareketlerin ardındaki aklın sahibi elbette bitkiler değildir. Onları ve herşeyi üstün bir akla sahip olan Allah yaratmıştır.

Bitkiler Kendi Aralarında Nasıl Anlaşırlar?

Bitkiler kendilerine zarar verecek olan canlılar tarafından saldırıya uğradıklarında salgıladıkları uçucu organik bileşikler ile yan komşuları olan diğer bitkileri uyarırlar. Aslında bu uyarma işlemi diğer bitkiler tarafından saldırıya uğrayan ağacın yaydığı uçucu organik bileşikleri gizlice “dinlemesi” biçimindedir. Böylece saldırıya uğramadan önce savunma sistemlerini harekete geçirirler. Peki bu dinleme işlemi nasıl gerçekleşir?

Saldırıya uğrayan bitkilerin açığa çıkardıkları uçucu organik bileşikler, komşu bitkiler tarafından kopyalanır ve art arda gelen sinyallerin analizi yapılarak savunma sistemi harekete geçirilir. Burada bir başka gerçek daha ortaya çıkmaktadır: Bitkiler birbirleri ile sadece konuşmakla kalmayıp aynı zamanda birbirlerini “dinlemekte”dirler. Nitekim uzmanların yaptıkları deneyler bu sinyallere “sağır” hale getirilen bitkilerin, tehlikeye maruz kalma riskinin daha fazla olduğunu göstermiştir.

Bitkilerin birbirleri ile iletişim kurmaları, kendilerini savunurken yaydıkları uçucu organik bileşiklerin diğer bitkiler tarafından “tehlike” habercisi olarak algılanıp savunma sistemlerini harekete geçirmeleri, onlara Yüce Allah tarafından özel olarak verilmiş bir savunma sistemidir. Herşeyi en ince ayrıntısına kadar mükemmel yaratan Allah, yeryüzündeki tüm bitkilerin bulundukları ortamda gereken her türlü ihtiyaçlarını da var etmiştir.

Çiçeklerin Döllenmesinde Arıların Önemli Rolü


Çeşitli çiçeklerle dolu bir çayırda bal toplayan arılar bir müddet izlenecek olursa ilginç bir durum dikkat çekecektir. Arılar her seferde sadece tek bir çiçek cinsi arasında gidip gelirler. Bir çiçekten diğerine uçarken başka cins çiçeklere dikkat bile etmezler.

Bazen günlerce aynı tür çiçekleri bu şekilde ziyaret eden arıların bu davranışları hem kendileri hem de çiçekler açısından faydalıdır. Bu durumu şöyle açıklayabiliriz. Bir çiçeğe ilk defa konan bir arı o çiçeğin yapısını tanımadığı zaman ufak bir nektar damlasını bulmak için çok uzun bir süre uğraşmak zorunda kalabilir. Arı ancak aynı çiçeğe beşinci veya altıncı kere konduktan sonra sürat ve beceri kazanır ve hedefine kolayca ulaştığı için zamandan kazanmaya başlar.

Bu durumun çiçekler açısından faydalı olan yönü ise, arıların tek çiçek türünü tercih etmeleri sayesinde süratli ve güvenilir bir döllenmenin sağlanıyor olmasıdır. Çünkü bir çiçeğin poleni başka çiçekleri dölleyemez ve ancak arıların aynı çiçekler arasında yaptıkları turlar sırasında çiçekler döllenmiş olur. Arılar aynı tür çiçekleri bulmak için kokudan faydalanırlar.

Arılar çiçekleri nektar ve polen toplamak için ziyaret eder. Ancak arılar polen toplamaya çalışırken, çiçekler için hayati önemi olan bir işlevi yerine getirir ve onların döllenmelerine aracılık etmiş olurlar. Çiçeklerdeki döllenme olayının gerçekleşebilmesi için çiçeğin dişi tohumunun erkek tohumlarla (polenlerle) birleşmesi gerekir. Yani çiçeğin bir miktar poleni yapışkan olan başçık üzerine gelerek buradan dişi tohumla birleşmelidir. Çiçekler genel olarak erkek organlarındaki polenleri kendi başçıkları üzerine kendileri ulaştıramazlar. Ancak böcekler sayesinde gerçekleşen birleşme ile döllenme olur ve yeni çiçekleri oluşturacak tohumlar meydana gelir.

Görüldüğü gibi çiçekler ve arılar arasında çok önemli bir bağlantı vardır. Her iki canlı da birbirlerini cezbedecek şekilde Allah tarafından yaratılmışlardır. Örneğin böcekler tarafından döllenmesi gereken çiçekler, böcekleri kendilerine çekecek nektarları salgılarlar ki gerçekte arıları çeken bu nektarlardır. Ayrıca çiçekler kokuları veya canlı renkleriyle de böceklerin dikkatini çekerler.

Monark Kelebeklerinde Biyolojik Pusula Keşfedildi


Bilim adamlarının son yaptığı araştırmalardan birinde, Monark kelebeklerinin gizemlerle dolu göçünün sırlarından biri ortaya çıkarıldı. Buna göre kelebekler 'içsel saat'leri sayesinde yönlerini tayin ediyorlar.

Bilim Adamları İçin Büyük Bir Sır

Monark kelebekleri, sonbahar döneminde gerçekleştirdikleri hayranlık uyandırıcı göçle bilinirler. Milyonlarca kelebek sonbaharla birlikte tam 3.200 kilometrelik yolculuk için havalanmaya hazırdırlar. Göç, çok ilginç bir biçimde, tam sonbaharda gecenin gündüze eşitlendiği gecede başlar. Kanada'dan havalanan bu dev kelebek bulutunun hedefi Meksika'dır. Bu ülkeler arası yolculukta izlenen rota son derece hassas ayarlanmıştır: Kelebekler Meksika'da her defasında hep aynı dağların yamaçlarını bulur ve kışı buradaki volkanik kayalarla kaplı arazide geçirirler. Burada Aralık'tan Mart'a kadar 4 ay boyunca hiçbir şey yemezler. Yaşamlarını vücutlarındaki yağ stoklarıyla sürdürürken, yalnızca su içerler. İlkbaharda açmaya başlayan çiçekler Monarklar için önemlidir. 4 aylık bir bekleyişten sonra ilk defa kendilerine bir bal özü ziyafeti çekerler. Mart sonunda yola koyulmadan önce çiftleşirler. Tam gece ile gündüzün eşitlendiği gün koloni tekrar geldiği yere dönmek üzere, kuzeye uçmaya başlar.

Bu durum bilim adamları için büyük bir merak konusudur. Kelebek gibi küçük bir canlı nasıl olup da 3200 kilometre gibi uzun bir mesafeyi havada katedebilmekte, milyarlarca defa kanat çırptığı bu yolculuk için enerji depolayabilmektedir? Dahası, milyonlarca kelebek nasıl olup da aynı anda bu kararı vermektedir? Bilim adamları için asıl bilmeceyi ise kelebek nesilleri hakkında bilinenler oluşturuyor.

Bir senede dört ya da beş nesil monark kelebeği yaşar. Sonbahar göçünü bu nesillerden sadece bir tanesi gerçekleştirir. Bu neslin ömrü diğerlerininkinden çok daha uzundur. Diğer nesiller ortalama 6 hafta yaşadıkları halde göçeden nesil 6 ay kadar yaşayabilir. Böylece göçeden nesiller her sene yenilenmiş olur. Bir diğer deyişle, göçe hazırlanan nesil bu yolculuğa ilk kez çıkmakta, 3200 kilometre uzaktaki bölge, ya da geçilecek yollar hakkında 'hiçbirşey' bilmemektedir. Bir göç nesli, bir önceki sene göç neslin, torunlarının torunlarıdır. Bu kelebekler nasıl olup da hiçbir bilgileri, haritaları ve yön belirleme pusulaları olmadan bu 'bilinmeyen' yolculuğu başarabilmektedirler?

Güneşe Doğru Ayarlanan Bir Pusula mı?

Bilim adamları arasındaki yaygın düşünce, monark kelebeklerinin bu isabet yeteneğinin güneşin gökyüzündeki konumunun izlenmesine bağlı olduğu yönündeydi. Ancak aynı bilim adamları, güneşin gökyüzünde sürekli hareket ediyor olmasının bu varsayım için önemli bir sorun oluşturduğunun hep farkında oldular. Bu sorunu ABD'deki Massachusetts Üniversitesi Tıp Okulu araştırmacılarından Lincoln Brower şöyle ifade ediyor:

"Eğer güneydoğu yönünde Meksika'ya gitmek istiyorsanız, gün doğarken güneşe göre açıyı hesaplarsınız. Bununla ilgili sorun ise, güneydoğuya doğru yönünüzle güneş arasındaki açı farkının, güneş gökyüzünde hareket ettikçe değişmesidir". ("Internal Clock Leads Monarch Butterflies to Mexico", John Roach, 10 Haziran 2003 http://news.nationalgeographic.com/news/2003/06/0610_030610_monarchs.html)

Brower ve arkadaşları, kelebeğin bu sürekli hesaplamayı nasıl başarabiliyor olabileceği sorusuna cevap vermek için bir dizi deney gerçekleştirdiler. Sonuçları ABD'nin ünlü araştırma dergisi Science'ın geçtiğimiz ayki bir sayısında yayınlanan deneylerinde, kelebeğin bu hesaplamalarında 'içsel saatin' oynadığı rolü ortaya çıkardılar. ("Illuminating the Circadian Clock in Monarch Butterfly Migration", Science, Volume 300, Number 5623, 23 May 2003, sf. 1303-1305. )

Biyolojik saat adıyla da bilinen bu içsel saatler, canlıların genlerinde 24 saatte bir tekrarlanan ritimler sayesinde uyku ve uyanıklık hallerindeki gibi fizyolojik etkinlik seviyelerini düzenlemede rol oynuyor. Bu saatlerin hayret verici bir özelliği ise ortamdaki ışık seviyesine göre ritimlerin ayarlanması. Işıkları açık bir odada uyumakta zorlanmamızın nedeni de bu ayarlama. (Biyolojk saat hakkında daha detaylı bilgi için bkz. http://www.mercek.org/index.php/article/view/507/1/42)

Bilim adamları, kelebeklerin yolu üzerindeki ABD'nin, sonbahar mevsiminin ışık şiddetini gece ve gündüze göre taklit edebilen bir laboratuvar ortamı hazırladılar. Bu ortamda bir süre tutulan kelebekler daha sonra açık havadaki uçuş simülatörüne (kelebek uçuşunun yapay olarak gözlemlenebilmesini mümkün kılan camekanla kaplı cihaz) yerleştirildi.

Kelebekler daha sonra cihaza ince metal bir telle bağlandı. Böylece kelebekler ancak ileri-geri ve sağa-sola hareket edebilecek şekilde sabitlenmiş oldular. Kelebeklere uçtukları izlenimini vermek için cihazın zemininden kelebeklerin altına doğru hafif bir de hava akımı yönlendirildi.

Bu ayarlamalar sonunda görüldü ki, sonbahar günlerini taklit eden laboratuvar ortamında bir süre kalmış olan bu kelebekler sanki Meksika yönüne gidiyormuş gibi güneydoğuya yöneldiler. Bu yönelme, kelebeğin, sonbahar ışık şiddetinde güneydoğuya doğru gidecek şekilde 'programlandığını' ortaya koyuyor.

İçsel saatin rolünü ortaya çıkaran bu araştırmayı yorumlayan Kansas Üniversitesi böcek bilimcilerinden Orley Taylor, "Bu araştırma, monark göçünü anlamamızda gerekli çok sayıda araştırmadan sadece bir tanesi" diyor.

Monark Pusulası: Allah'ın Sonsuz Kudretinin Bir Göstergesi

Elbette bir monark kelebeği kendi genlerinde böyle bir sistem meydana getirerek kendi kendini programlayamaz. Milyonlarca kelebeğin her birinde varolan ve bir pusula görevi gören bu sistemin üstün bir aklın ürünü olduğu açıktır. Hiçbir takvime sahip olmayan monark kelebeklerinin gece ile gündüzün birbirine tam da eşitlendiği günlerde yola çıkmaları da bu üstün aklın ilhamıyladır. Kelebekleri biyolojik pusulalarla donatan, bu göç sırasında milyonlarcasını dağılmadan birarada tutan bu üstün akıl, herşeyin yaratıcısı olan Yüce Allah'a aittir.

Dünyanın En İyi İnşaat Mühendisleri


Dünyanın en iyi inşaat mühendislerinden biriydi. Kendisinden yeni bir proje hazırlanması isteniyordu. Ancak hiç bir projede, kendisini bu kadar "aciz" hissetmemişti. Yüksekliği 960 m.'yi bulan 320 katlı dev bir binanın projesiydi bu. Binada aynı anda bir milyon kişinin yaşayabileceği bir ortam isteniyordu. Bunun için, binanın içinde tarım yapılabilecek mekanlara bile yer verilmesi isteniyordu. Dahası klima ve havalandırma sistemi için 1 wattsaat'lik bile olsa kesinlike elektrik enerjisi kullanmamalıydı. Son şart ise en inanılmazıydı: İnşatta çalışacak işçilerin tamamının "görme özürlü" olması gerekliydi.

Bir an için durup derin derin düşündü. Kendisinden inanılmaz bir şey isteniyordu. Kararını verdi: Projenin gerçekleştirilmesi imkansızdı. Eğer projeyi gerçekleştiren birisi çıkarsa tüm ömrünü onun emrinde geçirmeye hazırdı. Bütün hayatını ona adayacak ve kendisinden istediği herşeyi büyük bir titizlikle yerine getirecekti.

Yeryüzünde bu projeyi yapabilecek ne bir mühendis, ne bir inşaat firması, ne de böyle işçiler mevcut olmamasına karşın, dünyanın bir çok yerde böyle binalar mevcut:

Bir karınca büyüklüğündeki termitler yüksekliği 7 m.’yi bulan dev yuvalar yaparlar. Her yuvanın içinde sayıları bir milyonu aşan bir termit kolonisi yaşar.

Yuva koloninin yaşaması için gerekli tüm konfora sahiptir. Yuva, yukarı doğru açılan kanallar aracılığıyla devamlı olarak havalandırılır. Alt kısımda koloninin gıda ihtiyacını karşılamak için mantar yetiştirilir. Burada tarım yapılabilmesi için ısı 30 derecede, karbondioksit oranı %2,7 de sabitlenmiştir. Ayrıca bir soğutma ve nemlendirme tertibatına sahip olan yuvada; bir kraliçe odası, larvaların bakım odaları, besin depoları ile tüm mekanları birbirine bağlayan koridorlar ve güvenlik kapıları da bulunur. Üstelik bu yuvanın inşaatında çalışan tüm işçi termitler kördür.

Kör termitlerin ortaya koydukları bu beceri, bilinç gerektiren, akıl ve muhakeme yeteneğinin varlığına işaret eden davranışları gerektirmektedir. Tüm bunların bir termitte olmadığı ve kör tesadüfler sonucu ortaya çıkamayacağı da açıktır. Termitlerde dünyadaki diğer tüm canlılar gibi Allah tarfından yaratılmıştır.

Tohumdaki Sır


Tohumların, kendilerini diğer cisimlerden ayıran çok önemli bir özellikleri vardır. Tohumlar ait oldukları bitkinin her dalına, her yaprağına, bu yaprakların sayısına, şekillerinin nasıl olacağına, kabuğunun ne renkte ve kalınlıkta olacağına, besin ve su taşıyan borularının genişliğine, sayısına, bitkinin uzunluğuna, meyve verip vermeyeceğine, verecekse bu meyvelerin tatlarına, kokularına, şekillerine, renklerine dair -kısacası bir bitkiyle ilgili olabilecek- bütün bilgilere sahip cisimlerdir.

Peki tohum hakkında hiçbir bilgiye sahip olmasaydık ve bu cismi ilk defa görüyor olsaydık, ne işe yaradığını da hiç bilmeseydik ,tohumların içinden hiçbiri diğerine benzemeyecek şekilde sayısız bitkinin çıkabileceğini, bu bitkilerin bir kısmının da metrelerce yüksekliğe ulaşabileceklerini tahmin edebilir miydik? Tabii ki böyle bir şeyi tahmin edemezdik. Kuru tahta parçası görünümündeki bir cisimden mis gibi kokan, çarpıcı renklere ve şekillere sahip sayısız çiçeğin; papatyaların, lalelerin, açelyaların, sardunyaların, nergislerin, güllerin, menekşelerin çıkacağını düşünemezdik. Türlü türlü meyvelerin; şeftalinin, hindistan cevizinin, armutların, ayvanın, dutun, kayısının yine bu tohumların oluşturduğu ağaçlarda yetişeceğini, küçük siyah, kahverengi ya da sarı cisimlerin böğürtlenleri, portakalları, mandalinaları, karpuzları, erikleri, biberleri, domatesleri oluşturacağını hayal bile edemezdik.

İşte bu yüzden tohum, üzerinde düşünülmesi gereken bir varlıktır. Milyonlarca yıldır tohumların içinde bitkilere ait bütün bilgilerin saklanıyor olması sıradan bir konu olarak karşılanmamalıdır. Bu, konu üzerinde düşünen insanın önünde hiç beklemediği ufukları açacak, pek çok olaya bakış açısını değiştirecek bir bilgidir. Bu bilgiye daha yakından şahit olmak için insanın en yakınından, örneğin evinde bulunan sebzelerden, çiçeklerden, meyvelerden düşünmeye başlaması yeterlidir.

Örneğin; bir tohumun karpuz olabilmesi için ne gibi bilgilere ihtiyaç vardır, düşünelim. Karpuz dilimini eline alıp inceleyen insan çok belirgin bir düzen ile karşılaşacaktır. Bu düzeni sağlayan bütün bilgiler karpuzun çekirdeklerinde yani tohumlarında mevcuttur. İncelemeye devam eden kişi karpuzun çekirdeklerinin her birinin ince bir bağ ile sulu bölüme tutturulduğunu görecek, çekirdeklerin üzerindeki incecik zarı fark edecektir. İşte bu zarın yapısı hakkındaki bilgi de, karpuzun hoşa giden tam ayarında şekeri, esansı ve lezzeti ile ilgili bilgi de tohumlarında mevcuttur. Bundan başka; karpuzun kabuğundaki desenler, kabuğun kalınlığı, üzerindeki mumlu yapı ile ilgili bütün bilgiler de tohumlarda şifrelenmiştir. Kabuğu oluşturan hücrelerin bir duvar ustasının yapamayacağı kadar pürüzsüz bir doku oluşturmalarını sağlayan bilgi de tohumlardadır.

Dünyanın her yerinde karpuzların aynı özelliklere sahip olmasını sağlayan da tohumda saklı olan bu bilgidir. Bu nedenle dünyanın neresine gidilirse gidilsin karpuz çekirdeklerinden bir miktar alınıp toprağa ekilse bir süre sonra topraktan bir karpuz bitkisinin çıktığı, ardından bu bitkinin üzerinde küçük karpuzların oluştuğu, bunların da zamanla büyüdüğü ve gerçek birer karpuza dönüştükleri görülecektir.

Başka bir örnek verelim ve kozalaklı bir ağacın özellikleri ile çöl bitkilerinin özelliklerinden bazılarını ele alarak karşılaştırma yapalım.

Kışın toprak donduğu için ağaç kökleri bir süre sonra topraktan su alamaz duruma gelir. Ayrıca kışın çok az yağmur yağar, yağışların çoğu kar olarak düşer. Bu nedenle ağaçların kış mevsiminde ortaya çıkan susuzluğa dayanıklı olmaları gerekmektedir. İşte ağaçlar bu dayanıklılığı yaprakları sayesinde kazanırlar. Örneğin; birçok kozalaklı ağacın yaprakları sert bir deri gibidir ve dökülmez. Yapraklarının üzerindeki mumlu yüzey de suyun buharlaşma yolu ile kaybını azaltır ve bu dayanıklılık yaprakların dökülmesini ya da su basıncı dolayısıyla bitkinin solmasını önler. Bundan başka kozalaklı ağaçların yapraklarının çoğu iğne şeklindedir ve dona karşı da dayanıklıdır.

Ayrıca bu bitkiler her bahar mevsiminde yeni yapraklar açtıklarında enerji toplarlar. Ve yapraklarının dayanıklılığı da bu bitkiler için önemlidir. Çünkü hava koşullarının elverişli olduğu her fırsatta bu bitkiler hemen fotosentez yaparak besin depolarlar. Yapraklarını dökmeyen ağaçların şekli de genelde koni biçimindedir ve bu sayede üzerlerine düşen kar kolaylıkla dökülür ve böylece dalları ağırlıktan kırılmamış olur. Ayrıca tutulan karlar ağacı soğuğa karşı korur ve yapraklardan nemin çıkmasını azaltarak su kaybını önler. (Harry J. Fuller, The Plant World, s.85-86)

Çölde yaşayan bir bitki için kuraklık en büyük tehlikelerden biridir. Ne zaman yağacağı belli olmayan yağmurlar, kum fırtınaları, aşırı sıcaklık gibi olumsuz etkenler normal şartlarda bitkilerin soylarının tükenmesine neden olabilir. Ancak çöl bitkilerine ya da kurak iklimlerde yetişen diğer bitkilere baktığımızda bu ortamlara dayanıklı olmalarını sağlayacak kendilerine has özelliklerinin bulunduğunu görürüz. Tohum yapıları, üreme şekilleri bu koşullarda nesillerini devam ettirmelerini sağlayacak şekildedir.

Buna çöl bitkilerinin tohumlarının içerdikleri bazı maddelerden örnekler verelim. Birçok çöl tohumu filizlenmeyi engelleyen çeşitli maddelere sahiptir. Örneğin; Sinapis alba adlı bitkinin meyveleri tohumun filizlenmesini engelleyen "blastokoline" maddesi ihtiva eder. Arizona'daki bazı çöl bitkileri de yine yapılarındaki bazı maddeler nedeniyle çok uzun uyku dönemlerinden sonra fidan verirler. Mesela; Lepidium lasiocarpum isimli bitki bir yıldan sonra, Streptanthus arizonicus 26 aydan sonra filizlenmeye hazırdır. Bu maddelerin varlığının önemi özellikle kurak mevsim baş gösterdiğinde anlaşılmaktadır. (www.britannica.com/bcom/eb/article/1/0,5716,120821+4+111095,00.html)

Bu iki bitki türünün örnek verilen özelliklerinin her biri tohumun embriyosunda bulunması gereken bir bilgi demektir. Yapraklarını dökmeyen bitkilerle çöl bitkileri arasındaki bu birkaç fark bile bitki tohumlarının içinde ne kadar çok ve detaylı bilginin kodlanmış olduğunu açıkça göstermektedir.

Gülün kırmızı rengi, yapraklarındaki kıvrımların her birinin nasıl olacağı, kaç yaprağının olacağı, yapraklarının yumuşaklığı, kadifemsi yapısı, güle kokusunu veren maddelerin oranı birer bilgidir. Patlıcana morumsu siyah rengini veren, üstüne cilalı kabuğunu yerleştiren, içinde çekirdeklerini sıralayan, sapını dayanıklı kılan, sapın içindeki taşıma borularının uzunluklarını belirleyen, embriyoya yerleştirilmiş olan bilgilerdir. Kuru sopaya benzeyen asma dallarından tatlı ve su dolu kesecikler halinde üzümlerin çıkmasını sağlayan da bu bilgidir. Üzüm kabuklarını fındık kabuklarından farklı kılan, bu iki meyvenin renklerini, tatlarını, kokularını, içindeki vitaminleri, birinin sulu birinin kuru yapılarda olmasını sağlayan hep tohumların embriyolarındaki bilgilerdir.

Bitkiler ilk ortaya çıktıklarından beri tohumla üreyen türlerin her birinde bu bilgiler var olmuştur. Buraya kadar anlatılanlarda da açıkça görüldüğü gibi aksi bir durum yani bu bilginin olmaması demek, o bitkinin var olmaması demektir. Bu noktada akla şu soru gelmektedir:

Tohuma bu bilgi kim tarafından yerleştirilmiştir?

Küçücük bir tohumun içine böylesine muazzam bir bilginin yerleştirilmiş olması ve tohumların diğer özellikleri iman edenler için Allah'ın benzersiz yaratma sanatına birer örnektir. İmanlarını artıracak, onları Rablerine yaklaştıracak bir vesiledir. Allah herşeye güç yetiren olduğunu, binlerce sayfalık bilgileri küçücük tohumlara yerleştirerek ve eşi benzeri olmayan çeşit çeşit bitkiyi bu küçücük cisimlerden çıkararak bir kez daha bize göstermektedir. Tohumlardan bitkilerin çıkmasını sağlayan yalnızca Allah'tır.

Gerçek bu kadar açık olmasına rağmen bunu kavrayamayan insanlar yeryüzünde her zaman mevcut olmuştur. Allah'ın varlığını inkar eden kişiler bu yaratılış mucizesini görmezlikten gelerek tohumların ortaya çıkışına tesadüflerle açıklama getirmeye çalışmışlardır ve halen de çalışmaktadırlar. Ancak ne kadar çabalarlarsa çabalasınlar sonuç değişmeyecektir. Akıl ve vicdan sahibi her insan tohumdaki kusursuz tasarımı ve içerdiği olağanüstü bilgiyi inceledikçe bunun tesadüfen oluşamayacağını anlayacak ve yaratılış gerçeğine şahit olacaktır.

Sinek Ve Teknoloji


Küçücük Bir Böcekten Büyük İlhamlar

Sineklerin günümüz uçaklarından çok daha üstün bir uçuşa sahip oldukları biliniyor. Bir sinek gibi uçabilen minyatür uçaklar mühendislerin rüyalarını süslüyor. Örneğin Uzay ve havacılık endüstrisinin rüyası olan Mars'a yolculuk projelerinde gezegene iniş yapabilecek etkin bir manevra kabiliyetine sahip robotlara önemli görevler düşüyor. Sunduğu hava akrobasisiyle kelebekler, bu tür robotlara ilham kaynağı olmada ön plana çıkıyorlar. Nasa ve Georgia Tech kuruluşlarından bilim adamları, Mars yüzeyine inebilen ve yüzeyde ilerleyebilen verilen robotlar tasarlıyorlar. Böceklerden ilham alan bu robotlara entomopter adını veriyorlar. ("Nature's Flight System Could Be Key To Exploring Mars", 3 Aralık 2001: http://www.spacedaily.com/news/mars-plane-01a.html )

Günümüzde 15 santimden daha küçük kanat genişliğine sahip uçaklar üretmek mümkün olmuyor. Çünkü bundan daha küçük kanatlar kaldırma kuvveti oluşturamayacak kadar küçük kalıyor. Çok daha küçük olan sinekler ise minicik kanatlarıyla mükemmel uçuşlar yapabiliyorlar. Kanatların sağladığı kaldırma kuvveti, birim alana oranlandığında sineklerin uçaklardan 10 kat daha üstün olduğu ortaya çıkıyor.

Teknoloji Sinek Uçuşunun Çok Gerisinde

15 santim boyunda üretilen uçaklar, mini kamera monte edilerek 100 metre yükseklikten uçurulabiliyor ve casusluk amacıyla kullanılıyor. ABD'nin California eyaletinde kurulu olan AeroVironment isimli şirket yıllardır bu uçakların üretimini yapıyor. Ancak proje lideri Matt Keennon'ın büyük rüyası başka. Bu rüya 'casusun duvardaki sinek olma rüyası'olarak biliniyor. Bir sinek gibi havada asılı kalabilen, ani manevralar yapabilen, , dik yüzeylere konabilen ve uzaktan kumandayla yönetilen bir robo-sinek. Ancak günümüz teknolojisi sinekleri bu anlamda taklit etmede tamamen yetersiz kalıyor.

Mühendis Keennon, robo-sinek projesinde henüz, Wright kardeşlerin 1903 yılında bulunduğu seviyede olduklarını itiraf ediyor. ("Robotic Insect Takes to the Air", 11 Nisan 2001: http://news.bbc.co.uk/2/hi/science/nature/1270306.stm)

Aslında bilim adamları için değil bir sineği taklit etmek, sadece, küçük beyinlerine rağmen nasıl bu kadar geniş bir dizi akrobatik hareketi kontrollü bir şekilde gerçekleştirdiklerini anlamak bile havacılıkta devrim yaratacak nitelikte:

"Bu (araştırma) insanın merakını artırıyor: nasıl olur da böcekler böyle küçük bir beyinle bu kadar geniş bir dizi akrobatik hareket üzerinde uçuş kontrolü kurabiliyorlar? Eğer mühendisler birgün bunun nasıl gerçekleştiğini anlayabilirlerse havacılıkta bir devrim yaşanacaktır" ("Aerodynamics: Red admiral agility", Nature 420, 615 - 618 (2002); 12 Aralık 2002)

Güveler Ve Ses Üstü Dalgalar


Modern çağın hava kuvvetleri “düşmandan gizlenme yöntemleri” üzerinde yoğun bir çaba içindeler. Uğruna milyonlarca dolar dökülen teknolojiler sayesinde savaş uçakları varlıklarını sezdirmeden düşman topraklarının en içlerine kadar sızabilmektedirler. Buna karşın “erken uyarı sistemleri” ile donanmış radar uçaklar yüzlerce kilometre uzaktaki düşmanın en ufak bir hareketini tespit edebilmektedir. Belki fark etmiyoruz ama burnumuzun dibinde benzeri bir teknolojik değeri yüksek bir savaş cereyan ediyor. Ancak bu savaş uçaklar değil, yarasalar ile güveler arasında geçiyor. Bu iki canlı da uçaklara nazaran son derece küçük olmasına karşın, en az onların ki kadar etkili bir hedef tespit ve erken uyarı sistemine sahiptirler. Yarasalar avlarının yerini bulmak için "ekolokasyon" adı verilen bir yöntemi kullanırlar. Yarasa sayısı saniyede 25 ile 60 arasında değişen ses dalgalarını çevresine yayar.

Ses dalgaları etraftaki cisimlere ve canlılara çarpıp yarasaya geri döner. Yarasa, geri dönen dalgaları yorumlayarak çevresi hakkında son derece detaylı bilgiler edinir. Sistem öyle kusursuzdur ki, yarasa gece karanlığında yakınındaki bir sineğin ne tarafa hangi hızla uçtuğunu tespit edebilir. (Ayrıntılı bilgi için bakınız: Doğadaki Tasarım, Harun Yahya, Vural Yayıncılık, İstanbul 1999, ss.74-79 ) Yeri belirlenen bir sineğin yarasa karşısında yapabileceği fazla bir şey yoktur. Oysa bazı güveler sineklerden çok daha şanslıdırlar. Çünkü onlar diğer güveler ve böceklerden farklı olarak tıpkı AWACS uçaklarındaki gibi bir "erken uyarı" sistemi ile donatılmışlardır. Noctuidae, Geometridae ve Arctiidae ailelerinden olan güvelerin kanatlarının altında bir "erken uyarı sistemi" gibi çalışan kulaklar bulunur. Bu kulaklar güve için son derece hayati öneme sahiptir. Güve kulakları sayesinde kendisinden 100 m. Uzaktaki yarasayı duyarak yerini kestirebilir. Dahası yarasanın ortalıkta öylesine mi dolaştığını mı, yoksa kendisini hedef alan bir saldırıya mı başladığını belirleyebilir. Güvelerin kulakları, yarasaların yaydıkları çok düşük frekanslı ses dalgalarını algılayabilecek biçimde yaratılmışlardır. (Http://www..psu.edu/ShaversCreek/Shavings/WinSpring98/BatMoth.html)

Eğer güvenin algıladığı ses zayıfsa ve kaşı yönden geliyorsa güve hemen ters yöne dönerek uçar. Çünkü sesin zayıf olması yarasanın henüz güveyi tespit etmediğini dolayısıyla da peşine düşmediğini göstermektedir. Çünkü yarasalar avlarını tespit edip saldırırken artan bir sıklıkta ses dalgaları yollarlar. Zayıf dalgaları algılayan güve yön değiştirerek güveyi arkasına alıp oradan uzaklaşır.

Şüphesiz güvenin ses algılama menzili yarasanınkinden daha kısa olsaydı güvenin kulakları hiçbir işe yaramayacaktı. Böyle bir durumda güve yarasayı fark edip önünden kaçmaya çalışsa bile, yarasa onu keşfedecek ve daha hızlı uçtuğu içinde eninde sonunda avlayacaktı.

Eğer güvenin algıladığı sinyaller yoğunsa güve ya yere doğru ani bir dalış yapar, ya da havada keskin dönüşler içeren bir dizi manevra gerçekleştirir. Tüm bunların amacı yarasanın elinden kurtulmaktır.

Güveye, iki kulağa sahip olması sayesinde, ses kaynağının yönünü tayin imkanı verilmiştir. Eğer yarasa güvenin solunda ise sağdan gelen ses dalgaları, soldakine oranla saniyenin binde biri kadar bir gecikmeyle algılanır. (Animal Engineering, Readings from Scientific American with Introductions by Donald Griffin, The Rockefeller University W. H. Freeman Com., San Francisco, ss. 78-86 )

İki kulak arasındaki algılama farkı, güvenin ses kaynağının yerini belirlemesi için yeterlidir. Güvenin kulaklarındaki tek şaşırtıcı özellik şüphesiz bununla kısıtlı değildir. Bazı güvelerin kulakları zarımsı yapıdan oluşmuş bir kapağa sahiptir. Bu kapak tıpkı bizim kulak kepçemiz gibi işlev görür. Ses toplayarak duyma kapasitesinin güçlendirilmesine katkıda bulunurlar.

Bazı güveler sadece ultrasonik sesleri algılamakla kalmaz böyle sesleri yayabilirlerde.Bu güveler yarasayı algıladıklarında kaçmaktan ziyade ultrasonik sesler yayarlar. Yarasaların ultrasonik sesleri algılamaktaki ustalığı hatırlanacak olursa, güvenin bu hareketinin intiharla eş anlamlı olduğunu düşünebilirsiniz. Ancak yarasalar bu tip güvelerle karşılaştıklarında sanılanın aksine hızla oradan uzaklaşmayı tercih ederler.

Bilim adamları bu davranışın iki temele dayanabileceğini düşünüyorlar:

1- Güvenin çıkardığı ses yarasanın algılama sistemini bozmaktadır.

2- Ses yayan güveler yarasaların sevmediği bir tada sahiptir. Yarasa bu sesi algıladığında tatsız bir av ile karşılaştığını düşünmektedir.

Güvelerin ultrasonik dalgalar yayarak yarasaları kaçırmaları bir yana sadece ses algılamaları bile başlı başına bir mucizedir.

Güveler bazı bilim adamlarınca "basit" kabul edilen bir kulak yapısına sahiptir. Ancak bu kabulün nedeni evrimci anlayıştır. Merkezi sinir sistemine sahip olan hayvanlar ve insanlar dış dünyayı, binlerce sinir lifi ile beyine bağlı bir sıra duyu organı aracılığıyla algılar. Güvenin algılaması ise topu topu birkaç sinir lifi aracılığı ile sağlanmaktadır. Bu nedenle evrimci görüşe göre güvenin işitme duyusu en ilkeldir evrimsel gelişimin en alt basamaklarında yer almaktadır.

Bir sistemi sırf bu nedenlerle ilkel olarak kabul etmek bir hatadır. Çünkü herkes bilir ki bir işlevin, mümkün olan en az elemanla, küçük bir hacimde, ihtiyacı tam olarak karşılaması gelişmişliğin göstergesidir. Sözgelimi cep telefonları ve radyolar gibi ses algılayıcı sistemler teknoloji geliştikçe küçülmekte ve içlerindeki elektronik parçalar azalmaktadır. Aslında güvenin kulak yapısına bakılacak olursa yapılan işin sanıldığı kadar basit ve ilkel olmadığı da görülecektir:

Bir güvenin kulakları göğsünün arka kısmında yan taraflarında bulunur. Kulak, esas olarak böceğin göğüs ve karnını ayıran dar bir geçide yerleştirilmiştir. Kulaklar dışarıdan bakan biri için küçük bir oyuk gibi gözükebilir. Bu oyuğun içinde şeffaf bir kulak zarı vardır.

Geçidin orta kulak adlandırılan kısmında yer alan zarın hemen arkasında bir hava kesesi bulunur; duyu organın sinirsel öğelerini içeren ince bir sıra doku, hava kesesini boydan boya geçerek kulak zarının ortasından iskelet desteğine kadar uzanır. Bu sıra üzerinde A hücresi olarak adlandırılan iki işitme hücresi, yer alır. Bu iki hücreye bitişik olan ve B hücresi olarak adlandırılan, sesle doğrudan ilişkili olmayan üçüncü bir hücre mevcuttur.

Her A hücresi, bir ucu dışarı kulak zarına doğru, diğer ucu da içeri iskelet desteğine doğru uzanan birer sinir lifi gönderir. Güvenin algıladığı yüksek frekanslı seslerle ilgili tüm bilgiler A1 ve A2 olarak adlandırılan bu iki A lifinin üzerinden merkezi sinir sistemine iletilir. Her iki A lifi de büyük B hücresinin çok yakınından geçer. B hücresinin de bir sinir lifi vardır ve kısa bir mesafe sonra üç lif olarak birleşir. Birleşen üç lif, orta kulak siniri olarak güvenin merkezi sinir sisteminin içine doğru devam eder.

Sinir liflerindeki elektriksel sinyalleri 1 voltun binde bir-ikisi kadardır. Güvenin A liflerindeki sinyaller, duyu hücrelerinden merkezi sinir sistemine saniyenin binde ikisinden daha kısa bir sürede ulaşırlar.

Bu sinirler, yarasaların yaydığı ses dalgalarını algılayabilecek bir kapasitededirler. Ayrıca bu dalgalar arasındaki sessizlik süresindeki değişimleri ve dalgaların büyüklüklerini tespit etme konusunda son derece hassastırlar.

Bir güvenin kulağı yarasanın çığlığı tarafından uyarıldığı zaman A hücresi derhal faaliyete geçer. Uyarı şiddetlendikçe sinirdeki elektrik sinyallerinde de değişimler görülür. İlk önce, sinyallerin büyüklükleri artar, ikinci olarak sinyallerin arasındaki zaman aralığı azalır. A1 lifi, ses algılama konusunda A2 lifinden daha hassastır (20 desibel kadar). Güve Liflerlerdeki tüm bu özellikler sayesinde, bir güvenin kulağı yarasanın çığlığı tarafından uyarıldığı zaman A hücresi derhal faaliyete geçer. Uyarı şiddetlendikçe sinirdeki elektrik sinyallerinde de değişimler görülür. İlk önce, sinyallerin büyüklükleri artar, ikinci olarak sinyallerin arasındaki zaman aralığı azalır. A1 lifi, ses algılama konusunda A2 lifinden daha hassastır (20 desibel kadar). Güve Liflerlerdeki tüm bu özellikler sayesinde, uzaktaki bir yarasanın uzun ve zayıf çığlığını, öldürmek üzere yaklaşan bir yarasanın şiddetli çığlığını ayırabilir. (New York City Üniversitesi'nden Asher E. Treat, bir yandan yarasanın çığlıklarını elektronik cihazlarla simüle ederken diğer yandan güvenin sinirlerindeki sinyalleri de osiloskop ile gözlemlemiştir. )

Güvenin yarasanın sesini duyabilmesi, karmaşık bir dizi işlem sayesinde mümkün olabilmektedir. Bu işlemlerden birini, örneğin A1 lifi ile A2 lifi arasındaki algılama farkını ortadan kaldırırsanız güve, yarasa çığlıkları arasındaki farkı hissedemez. Veya yarasadan kaynaklanan seslerin çarptığı kulak zarının yapısını bozun, güve artık hiçbir şey duymaz. Güvenin yarasanın seslerini algılaması da tek başına bir şey ifade etmez. Böceğin hayatta kalabilmesi için düşmanın varlığına tepki verecek bir sinir sisteminin de olması şarttır.

Bu sinir sisteminde, belirli kasları harekete geçirerek kaçışı sağlayan tepkimeler bir düzen içerisinde gerçekleşmelidir. Sinir sisteminin, belli bir düzendeki duyumsal veriyi (yarasanın çığlıkları), belirli bir motor çıktıya (güvenin kaçış hareketi) çeviren sistem, bir "karmaşık" bir sistemdir.

Böyle bir sistem "aşama aşama" gelişemez, çünkü ara aşamaların hiçbiri herhangi bir işe yaramayacaktır.

20. yüzyıl bilimi, canlılığı en ince detaylarına kadar incelemiş ve gerçekte canlı yapılarının çoğunun birbirini takip eden çok sayıda küçük değişiklikle oluşamayacak kadara karmaşık olduğunu göstermiştir. Bu tip kusursuz sistemlerin var olabilmesi için "son derece üstün bir bilgiye" sahip bir tasarımcıyı gereklidir.

Doktor Karıncalar


Bilim adamları karıncaların çok etkili bir mikrop arındırma yöntemi uyguladığını ortaya çıkardı. İsveçli araştırmacıların çalışmasına göre Formica paralugubris cinsi karıncalar, yuvalarında reçine biriktiriyorlar. Ancak karıncaların seçtiği bu reçine bildiğimiz reçinelere benzemiyor: içerdiği özel kimyasallar hastalıkları yuvalarından uzak tutuyor. Bu küçücük böceklerin tıp bilgisi gerektiren böyle bir davranış göstermesi, üstün bir Akıl tarafından yönlendirildiklerini gösteriyor.

Karıncalar, yuvalarını çevreleyen kozalaklı ağaçlardan sertleşmiş özsu tanecikleri topluyorlar. Toplanan reçinenin miktarı, yuvanın büyüklüğüne göre 20 kilogramı buluyor.

Lozan Üniversitesi'nden Michel Chapuisat ve ekibi, reçinenin antiseptik özelliğini test ettiler. Bunun için reçine içeren ve içermeyen iki ayrı yuvada ortaya çıkan hastalıkları gözlemlediler. Reçinesiz yuvada üç kat daha fazla mantar üredi ve hastalığa sebep olan bakterilerde belirgin bir artış görüldü.

Karıncaların ortaya koyduğu kimya bilgisi bilim adamlarının da dikkatini çekiyor. Fransız ekolog M. Lambrechts araştırmayı yorumlarken şunları söylüyor:

"Hayvan davranışlarını incelersek insanların kullanacağı kimyasallar bulabiliriz" ("Ants' nests stay pine-fresh", 6 Ocak 2003: http://www.nature.com/nsu/030106/030106-2.html)

Karıncalar küçük bir bedene ve nispeten basit bir organizmaya sahiptirler. Öte yandan hastalık, mikrop ve antibiyotik arasındaki ilişkiyi çözümleme işi ise oldukça kompleks bir davranış. Çünkü karıncaların hastalığın nedeni olabilecek bakteri veya mikroplardan haberdar olmaları söz konusu değil. Bilim adamları özel mikroskoplar sayesinde bunları inceleyebiliyor.

Reçinenin hastalığa çözüm olarak benimsenmesi de aynı şekilde şaşırtıcı. Çünkü reçinenin hastalığı önlediğini anlamak için reçineli ve reçinesiz yuvalar arasında karşılaştırmalar yapmaları ve bir yorum ortaya koymaları gerekiyor. Bu da eczacılıkta yapılan deneyleri akla getiriyor. Çevrelerinde çok sayıda bitki dururken özellikle kozalaklı ağaçları seçmelerinde bilinç olduğu açık. Karıncalar sanki hangi hastalığa hangi ilacı vereceğini bilen bir doktor gibi davranıyor. Ayrıca karıncaların reçine toplamada uyum içinde çalışması, yuvanın genel sağlığının gözetildiğini ortaya koyuyor. Bu akılcı ve fedakar davranışlar üstün bir Aklın varlığını gösteriyor.

Gardiyan Arılar


Kovandan bal çalmaya çalışan böcekler öldürülemezlerse tutuklanıp hapsediliyor.

Popüler bilim dergisi Nature'un internet sitesinde yayınlanan bir haber, balarılarının organize sosyal hayatlarına yeni bir boyut kazandırdı. Güney Afrika balarısını inceleyen bilim adamları arıların kovanlarını ve bal stoklarını asalaklardan korumak için akıllı bir çözümle donatıldıklarını ortaya çıkardılar.

Almanya'nın Martin Luther Üniversitesi'nden Peter Neumann ve meslektaşları 57 gün boyunca Güney Afrika'da yaşayan bal arılarını incelediler. Gördükleri karşısında oldukça şaşırdılar. Arılar kovanlarına tecavüz edip, ballarını çalan kovan asalağı bir tür böceği (Aethina tumida) yakalayıp hapsediyorlardı. Uyguladıkları hapsetme politikası sayesinde asalakların kovana zarar vermesini başarılı bir şekilde önlemiş oluyorlar. Tecavüzle birlikte tam bir takım çalışması sergileyen bal arıları, asalak böceklerin önce etrafını kuşatıyor, onları kovanın bir köşesine sıkıştırdıktan sonra, etraflarını hemen donan ağaç sütüyle çeviriyorlar. Bir süre sonra hapsedilen böcekler açlıktan ölüyorlar.

Arıların hırsızları hapsetmekten başka daha etkili bir savunmaları bulunmuyor. Neumann bunun nedenini şöyle açıklıyor: "bu kovan asalağı böcekler birer tank gibiler, kalın zırhları onları arıların öldürücü iğnelerine karşı koruyor". İşte bu nedenle arılar için düşmanlarını hapsetmek tek akıllı çözüm olarak kalıyor.

Eğer asalak böceklerin sayısı fazla ise, hapiste bir mahkum ayaklanması kaçınılmaz oluyor. Ancak gardiyan arılar kısa süreli de olsa bu kontrol sayesinde vakit kazanmış oluyorlar. Kraliçe arıyı "bir an önce kovanı terk etmemiz gerek" diye uyaran gardiyanlar, arı larvalarının güvenli nakline fırsat tanımış oluyorlar.

Arıların kovanlarını, ballarını ve larvalarını korumak için böyle akıllı bir çözümü kendi başlarına geliştirmiş oldukları tabii ki iddia edilemez. Şüphesiz bal üretmeyi ve o kusursuz petekleri sonsuz akıl ve güç sahibi Allah'tan gelen ilham ile yapabilen balarıları, düşmanla mücadelede de aynı Sonsuz Bilgi Kaynağı'ndan ilham almaktadırlar. İğnelerinin etkisiz kaldığı böyle zor bir durumda soylarının tükenmesi kaçınılmaz bir sondur, ama Yüce Allah'ın ilhamı ile hareket eden arılar uyguladıkları bu akıllı çözümle bu sorunu da çözmüş oluyorlar.

Nature Science Update, Tom Clarke, Arılar Suçluları Hapsediyor (Bees Jail Offenders), 22 Mayıs 2001.

Önemli Bir Aşama : Filizlenme


Döllenmenin ardından oluşan tohumun bir bitkiye dönüşmesindeki ilk aşama taşınmadır. Taşınmanın ardından da filizlenme safhası başlar. Bir tohum olgunlaştığında genellikle hareketsizdir, hemen filizlenmez. Çünkü tohumun filizlenmesi için pek çok faktörün birarada olması gerekmektedir. Bir tohumun filizlenebilmesi için uygun sıcaklık, nem ve oksijen gereklidir. Bu şartlar biraraya geldiğinde, uyku halindeki tohumlar canlanmaya başlar. Bu şartlardan herhangi birinin eksik olması filizlenmeyi durdurur.

Bir tohumun filizlenmesi için öncelikle suya ihtiyacı vardır. Çünkü olgun tohumlardaki embriyoların suyu bulunmaz, metabolizmanın tekrar aktif hale gelmesi için yani büyüme işleminin başlayabilmesi için hücrelerde sulu bir ortama ihtiyaç vardır. Ayrıca büyüme için gerekli enzimlerin etkinliğinin artması da suya bağlıdır. Bu ihtiyaç tohumların ıslanması ile karşılanır. Tohumların uyanması yani metabolizmalarının harekete geçmesi ile birlikte kök ve filiz de büyür ve bu aşamada hücre bölünmesi başlar. Bir yandan da belirli fonksiyonların özel dokular tarafından gerçekleştirilebilmesi için hücre farklılaşması olur. (Plantwatching, s.47)

Bu aşamada oksijene mutlaka ihtiyaç vardır. Tohum, içindeki besinlerden oksijenli solunumla enerji ve ısı üretimine başlar. Çünkü çimlenen tohumlarda yeni oluşan bitkinin kısımlarının oluşabilmesi için enerjiye ihtiyaç vardır. Uygun sıcaklık da, enzimlerin maksimum hızlarda çalışmasını sağlar. (Musa Özet, Osman Arpacı, Ali Uslu, Biyoloji 3, Sürat Yayınları, s.46)

Görüldüğü gibi, tohumun büyümek için enerjiye yani besine ihtiyacı vardır. Fakat tohumun, topraktaki mineralleri kökleriyle alacak hale gelene kadar beslenebileceği bir kaynağı yoktur. Öyleyse tohum, büyümesi için gerekli olan besini nasıl bulmaktadır?

Bu sorunun cevabı tohumun yapısında gizlidir. Daha önceki bölümlerde de detaylı olarak ele alındığı gibi, döllenme sırasında tohumla birlikte oluşan besin deposu, bitki filiz verip toprak dışına çıkana kadar tohumlar tarafından kullanılır. Tohumlar bir bitki olarak kendi besinlerini üretir hale gelinceye kadar, bünyelerindeki bu yedek besinlere ihtiyaç duyarlar.

Uykudan Uyanan Tohumlar

Yukarıda söz ettiğimiz şartlar biraraya geldiğinde tohum içinde kimyasal bazı işlemler gerçekleşir. Biraz önce de belirttiğimiz gibi tohum filizlenmeden önce uyku halindedir. Embriyonun uyku halinde kalmasını sağlayan ise bazı bitki hormonlarıdır. Bunların en önemlisi absisik asittir. Ayrıca tohumların kabuğu gaz alışverişini engelleyecek kadar sık ve sert dokulu olduğundan embriyonun faaliyetini engeller ve uyku halinde kalmasına neden olur. Tohum ıslatıldığında ise, tohum örtüsü şişer ve embriyo hücrelerinde bulunan enzimler faaliyete geçerek "giberellin" isimli yeni bir hormon salgılamaya başlarlar. Bu hormon uyku durumunda kalmayı sağlayan absisik asitin etkisini ortadan kaldırır. Bu asitin etkisinin ortadan kalkması ile de büyüme enzimleri (alfa-amilaz) faaliyete geçer. Bu enzimler besin deposu içindeki nişastanın parçalanarak şekere dönüşmesini sağlar. Ortaya çıkan şekerler embriyo hücreleri tarafından solunumda kullanılır ve böylece hücrelerin bölünmesi için gerekli enerji sağlanmış olur. (Solomon, Berg, Martin, Villie, Biology, Saunders College Publishing, s.766-768)

İnsanlar bir tohumu toprağa attıklarında genellikle bu işlemlerden hiç haberdar olmazlar. Birkaç gün sonra o tohumun filizlenmesine ve yavaş yavaş bir bitki haline dönüşmesine ise doğal bir süreç olarak bakarlar. Oysa yukarıda sıraladığımız işlemler, görüldüğü gibi son derece komplekstir. Önce son derece uygun şartlar oluşmakta, ardından birbiri peşisıra kimyasal işlemler gerçekleşmekte, bir enzim diğerine etki ederek tohumun bitki haline dönüşmesini sağlamaktadır. İnsanlar bu kusursuz sistemler üzerinde biraz derinlemesine düşündüğünde, büyük bir yaratılış gerçeği ile karşı karşıya olduğunu anlayacaktır. Çünkü böyle içiçe, biri olmazsa diğeri aktif hale geçmeyen sistemlerin kör tesadüfler sonucu ortaya çıkamayacağı son derece açıktır. Üstelik bu kompleks sistem filizlenme ile de son bulmamakta, daha da mucizevi işlemlerle devam etmektedir.

Gereken koşullar sağlanıp da çimlenme başladığında tohum topraktan suyu çeker ve embriyo hücreleri bölünmeye başlar, daha sonra tohum kabuğu açılır. Filizlenme süresince bitkinin tohumdan çıkan ilk bölümü kökçüklerdir. Bitkilerdeki kök sisteminin ilk aşaması olan bu kökçükler sürekli sürgün verir ve toprakta aşağı doğru büyürler. Kökler büyüdükçe toprağı zorlamaya başlar ve yüksek derecede bir sürtünmeyle karşılaşırlar ancak hiçbir zarar görmezler. Çünkü yeni oluşan bitkinin köklerinin uç kısmındaki hücreler daima aktif haldedirler. Ve en uçtaki hücreler, kökün sert toprak parçaları arasında hareket ederken korunmasını sağlarlar. Bu koruyucu tabakanın (kaliptra) arkasındaki hücreler ise çok hızlı bölünme (mitoz bölünme) özelliğine sahip olup, kökün günde yaklaşık 11 cm. kadar uzamasını sağlarlar. Kökçükler gelişerek dallandıkça, topraktan gerekli besini emebilecekleri yüzeyi artırmanın yanında, bitkinin toprağa daha sağlam tutunmasını da sağlarlar. Buna ilave olarak kökçüklerde oluşan emici tüyler de bitkinin topraktan gerekli maddeleri emerek alma kapasitesini artırmada büyük rol oynamaktadır. (Musa Özet, Osman Arpacı, Ali Uslu, Biyoloji 3, Sürat Yayınları, s. 48)

Kökçüklerin gelişmesini, sap ve yaprakları üretecek olan tomurcukların gelişimi izler. Tohum toprak üstüne, ışığa doğru yönelir ve sürekli güçlenir. Toprağın üstüne çıkan filizin ilk gerçek yaprakları açıldığındaysa bitki, fotosentez yoluyla kendi besinini üretmeye başlar.

Buraya kadar anlatılanlar, aslında herkesin çok iyi bildiği, hatta sık sık gözlemlediği konulardır. Tohumların toprağı yararak içinden çıkmaları herkes için çok alışılmış bir görüntüdür. Ama tohumun büyümesi sırasında gerçekte bir mucize gerçekleşmektedir. Ağırlığı ancak "gram"larla ifade edilebilecek olan tohum, üzerindeki kilolarca ağırlıktaki toprağı delerek yukarı çıkarken hiç zorlanmaz. Tohumun tek amacı toprağın üstüne çıkıp ışığa ulaşmaktır. Çimlenmeye başlayan bitkiler incecik gövdeleriyle sanki boş bir alanda hareket ediyormuş ve üzerlerinde onca ağırlık yokmuşçasına, oldukça rahat bir şekilde, yavaş yavaş gün ışığına doğru yol alırlar.

Toprağın altındaki tohumun yüzeye çıkış yolu çeşitli yöntemlerle kapatılarak, gün ışığına ulaşmasını engellemek için deneyler yapılmıştır. Deneyler sonucunda ortaya çıkan sonuçlar çok şaşırtıcı olmuştur. Tohum, önüne çıkan her engelin etrafından dolaşacak kadar uzun filizler çıkartarak ya da büyüdüğü yerde baskı yaratarak sonuçta yine gün ışığına ulaşmayı başarmıştır. Tohumların filizlenme işlemi hızlandırılmış görüntü şeklinde izlendiğinde filizin kararlılığı ve yönünü şaşırmadan güneşe doğru hareket etmesi çok daha iyi anlaşılmaktadır.

Çimlenmeye başlayan tohumların amaçları güneş ışığına ulaşmak olduğu için filizler her zaman toprağın üstüne çıkacak şekilde hareket ederler. Ancak çimlenen bir tohumda iki yönde büyüme gerçekleşir. Filiz yukarıya doğru yani yerçekimine ters yönde hareket ederek büyümektedir. Kökler ise yerçekimine uygun hareket ederek toprağın içlerine doğru ilerlemektedir.

Bir bitkinin iki ayrı organının birbirine tamamen zıt yönlere doğru büyümeleri elbette ki düşündürücüdür. Nasıl olup da hem kökler hem de filiz hangi yöne gideceklerini bilmektedir?

Bitkilerde büyümeyi yönlendiren uyarılar, ışık ve yerçekimidir. Tohumdan çıkan ilk kök ve filiz bu iki çeşit uyarıya karşı oldukça duyarlı sistemlerle donatılmıştır. Filizlenen bitkinin köklerinde yerçekimi sinyallerini algılayan hücreler bulunur. Yukarıya doğru yükselen gövde kısmında ise ışığa duyarlı olan hücreler bulunur. İşte bu hücrelerin ışığa ve yerçekimine duyarlı olması da bitkinin parçalarını gereken yerlere doğru yönlendirir. Bu iki uyarı türü, köklerin ve filizin büyüme yönü eğer dikey değil de farklı bir yöne doğru ilerliyorlarsa, yönlerini düzeltmelerini de sağlar. (Malcolm Wilkins, Plantwatching, New York, Facts on File Publications, 1988, 65-66)

Filizlenmeye başlayan tohumla ilgili dikkat çeken bir yön daha vardır. Bilindiği gibi, toprağın genel olarak çürütücü, parçalayıcı özelliği vardır. Ancak toprağın içindeki tohum ve milimetrenin yarısı inceliğindeki kökler hiçbir zarar görmezler. Aksine toprağı kullanarak sürekli gelişir ve büyürler.

Buraya kadar verilmiş olan bilgiler tekrar gözden geçirildiğinde çok olağanüstü bir durumla karşı karşıya olunduğu hemen görülecektir. Tohumu oluşturan hücreler birdenbire başkalaşmaya başlamakta ve değişik şekiller alarak bitkinin değişik bölümlerini oluşturmaktadır. Üstelik köklerde ve gövde de görüldüğü gibi farklı yönlerde hareket etmektedirler.

Gelin, kökün yerçekimiyle hareket ederek toprağın derinliklerine gitmesini, gövdenin de toprağın üstüne doğru hareket etmesini biraz daha derinlemesine düşünelim. Dıştan bakıldığında son derece güçsüz bir görünüme sahip olan bu yapıların farklı iki yöne doğru toprağı yararak yaptıkları hareketler akla pek çok soru getirmektedir. Öncelikle bu noktada göz önünde bulundurulması gereken çok önemli bir karar anı vardır. Bu karar anını, yani hücrelerin başkalaşmaya başladığı zamanı belirleyen, onlara gidecekleri yönü gösteren kimdir ya da nedir? Nasıl olup da her hücre hangi bölümde yer alacağını bilerek hareket etmektedir? Nasıl olup da bir karışıklık çıkmamakta örneğin kök hücreleri sadece toprağın içine doğru uzamakta, toprağın üstüne çıkmaya çalışmamaktadır?

Bunlara benzer bütün soruların aslında tek cevabı vardır. Bu kararı alan ve uygulayan, karışıklık çıkmaması için gerekli olan sistemleri belirleyen ve bünyesinde bunları oluşturan elbette ki bitkinin kendisi değildir. Bitkiyi oluşturan hücreler de bunları yapamazlar. Bir hücrenin tahmin ve karar yeteneği, şuuru, ışığı veya yerçekimini ayırt edebilecek bir bilinci, zekası olamaz. Başka bir canlının müdahalesiyle de bu sistemlerin oluşması mümkün değildir. Örneğin, bir insana (bitkiler konusunda dünyanın en bilgili uzmanı da olsa) yerçekimine duyarlı bir bitki hücresi meydana getir deseniz, bunu başarması mümkün değildir.

Bütün bunlar bize bitkilerin üstün ilim sahibi bir güç tarafından yaratıldıklarını ve yönlendirildiklerini gösterir. Yani bu kararı hücrelere aldırtan, onlara görevlerine göre ne yöne gitmeleri gerektiğini gösteren ve sahip oldukları tüm yapıları yaratan üstün bir akıl sahibi vardır. Benzeri olmayan bu sonsuz aklın sahibi tüm alemlerin Rabbi olan Allah'tır. Allah kuru tahta benzeri tohumlardan mucizevi işlemlerle çeşit çeşit bitkiler yaratmakta ve bu bitkiler sayesinde de yeryüzüne hayat vermektedir:

Filizlerin Kararlılığı

Tohumun yarılıp içinden filizin çıkabilmesi için çok yüksek miktarda kuvvet gerekmektedir. Bu kuvvetin büyüklüğü, filizlerin asfalt kaldırımların kenarlarını çatlatarak çıktıkları düşünüldüğünde çok daha iyi anlaşılmaktadır.

Bu etkili gücün kaynağı her bitkiyi oluşturan hücrelerin içinde bulunan hidrolik basınçtır. Bitkinin büyümesi için mutlaka gerekli olan bu basınç hücre duvarını esnetip, genişletme özelliğine sahiptir. Eğer bu özellik olmasaydı bitkilerdeki hücre büyümesi gerçekleşemezdi, yani tohum filizlenemezdi. (Plant watching, s.56)

Büyük bir güç kullanarak topraktan çıkmaya çalışan filiz, daha önce de belirttiğimiz gibi her zaman uygun bir ortama ulaşamayabilir. Güneş ışığını engelleyecek bir cismin altında kalması durumunda bitkinin fotosentez yapması zorlaşacaktır. Bu da bitkinin büyüyememesi demektir. Bu nedenle toprağın altından çıkan her filiz, yeryüzüne ulaştığında hemen ışık kaynağına doğru büyüme yönünü değiştirir. Bu işlem fototropizm olarak adlandırılır. Fototropizm, bitkilerde bulunan ışığa duyarlı yön tayin sisteminin bir göstergesidir. (Helena Curtis, N. Sue Barnes, Invitation to Biology, Worth Publishers, Inc. s.356-357)

Evinizdeki bitkileri daha karanlık ya da güneşi doğrudan almayan bir yere koyduğunuzda bir süre sonra güneşin geldiği yöne doğru döndüklerini görürsünüz. Bunun için kimi zaman yapraklarının boylarını uzattıklarına ve yapraklarının yönlerini değiştirdiklerine hatta kıvrıldıklarına şahit olursunuz. Bir filizin, toprağın altından çıkar çıkmaz ya da karanlık bir yere konulduğunda hemen güneşin geldiği yönü tesbit edebilmesi ve bilinçli bir şekilde o yöne yönelebilmesi üzerinde düşünülmesi gereken bir konudur. Bitkiler sahip oldukları ışığa ve yerçekimine dayalı kusursuz yön tayin yetenekleri sayesinde kolaylıkla bu başarıyı elde etmektedirler. Hayvanlarla ve insanlarla karşılaştırdığımızda bitkiler, ışığı algılama konusunda daha avantajlı durumdadırlar. Çünkü hayvanlar ve insanlar sadece gözleriyle ışığı algılayabilirler. Bitkilerdeki yön tayin sistemleri ise son derece keskindir. Bu yüzden hiçbir zaman yönlerini şaşırmazlar.

Çimlenme küçücük bir cisimden metrelerce uzunluktaki ve tonlarca ağırlıktaki bir bitkinin oluşmasının ilk aşamasıdır. Yavaş yavaş büyüyen bitkinin kökleri yere, dalları yukarıya doğru uzanırken, içindeki sistemler de (besin taşıyacak sistemler, döllenmesini sağlayacak sistemler, bitkinin uzamasını, genişlemesini ve bunların durmasını kontrol eden hormonlar) hep birlikte ortaya çıkar ve hiç birinin oluşumunda bir aksama ya da gecikme olmaz. Bitki için gerekli olan herşey aynı anda gelişir. Bu, son derece önemli bir detaydır. Örneğin; bir yandan çiçeğin döllenme mekanizması gelişirken, diğer yandan da taşıma boruları (besin ve su taşıma boruları) oluşmaktadır. Aksi takdirde, mesela çiçek döllenme mekanizması oluşmayan bir bitkide, su ve besinleri taşımaya yarayan soymuk ya da odun borularının var olmasının hiçbir önemi olmayacaktır. Bu durumda köklerin oluşmasının da bir anlamı yoktur. Çünkü böyle bir bitki neslini devam ettiremeyeceği için ek mekanizmalar bir işe yaramayacaktır.

Ancak bitkilerin gelişiminde bu yönde bir aksaklık görünmez. Herşey tam olması gerektiği şekilde ve olması gerektiği zamanda gerçekleşir.

Buraya kadar anlatılanlardan anlaşılacağı gibi bitkilerdeki birbirine bağlı ve tam uyumlu olan bu mükemmel tasarımda kesinlikle tesadüfen oluşamayacak bir plan vardır. Evrimci bilimadamlarının iddia ettikleri gibi kademeli bir oluşum, diğer canlılar gibi bitkiler için de hiçbir şekilde söz konusu değildir.

Bu kitap boyunca incelediğimiz tohumdaki kusursuz tasarım herşeyi en ince ayrıntısıyla bilen ve meydana getiren bir Yaratıcı'nın varlığının delilidir. Bitkilerin yaşamındaki yalnızca ilk aşama yani tohumun oluşumu bile bize üstün güç sahibi olan Allah'ın yaratmasındaki benzersizliği açıkça göstermeye yeterlidir.

Yapraktaki Tasarim Ve Yaprak Çeşitleri


Yaprağın hangi parçasını incelersek inceleyelim, sonsuz bir aklın ve sanatın izlerini görürüz. Yaprağa dıştan baktığımızda gördüğümüz biçim ve yapılar, belirli bir amaca yönelik bir tasarım içerir. Örneğin, yaprağın maksimum güneş ışını alması için düz durması gerekir. Ancak, yaprak böyle durabilmek için özel bir dizayna sahip olmalıdır. Yaprağı bir gazete ya da dosya kağıdına benzetmek yaprağın düz durması için gerekli olan bu dizayn hakkında daha iyi fikir verecektir. Bir düşünün, gazete ya da dosya kağıdını düz tutmak istediğinizde ne olur? Tabi ki kağıt kıvrılarak ikiye katlanır. Bu durumda yapmanız gereken kağıdı, ona yanlardan belirli bir kıvrım vererek dik tutmaktır. İşte, yaprakların dik durması için de böyle belli bir kıvrıma sahip olmaları gerekir.

Yaprakların dik durarak, güneş ışığından daha fazla yararlanmalarının bir nedeni de yapılarında bulunan "midrib" adı verilen ana damardır. Bu damar, yaprağın ortasından geçerek onu bitkiye bağlar. Ayrıca, midribden çıkarak yaprağın yüzeyine yayılan başka damarlar da vardır. Midrib ve bu yan damarlar, yaprağın düz durmasını sağlayan iskelet görevi görürler. (http://www.botany.hawaii.edu/faculty/webb/BOT410/Leaves/LeafMidrib.htm)

Peki, yeryüzünde sayılamayacak çoklukta bulunan yapraklardan her biri ince bir hesap isteyen bir eğime ve düz durmaları için gerekli olan bir damar sistemine nasıl sahip olmuşlardır? Elbette, bir yaprağın kendi kendine, güneş ışığından maksimum oranda faydalanmasının daha iyi olacağını akletmesi imkansızdır. Ayrıca, yaprakların dik durmak için gerekli olan eğimi uç kısımlarına vererek yeşermeleri ya da ortalarında iskelet görevi görecek bir damar sistemi oluşturmaya karar vermeleri de mümkün değildir. Tüm bunların tesadüfen kendi kendine oluşması da kesinlikle imkansızdır. Sonuç olarak, yukarıdaki sorunun cevabı çok basittir: Yaprakların damar sistemini de, uç kısımlarındaki kıvrımı da tasarlayan ve yaratan Allah'tır.

Yaprak, mekanik bir destek gibi iş gören damarlar üzerine serilmiş bir kumaş parçasına benzer. Bu sistemin etkili olarak kullanılması için yaprağın, dokusunu desteklemek için kullanacağı enerjiyi en az seviyede tutması gerekir. Yaprak için bu çok kolaydır. Çünkü, yaprağın ortasından geçen bir ana destek ve bu destekten yaprakların kenarlarına uzanan ikincil destekler vardır. Özellikle, ana damarın bulunduğu yer yaprağın ağırlık dağılımını dengelemede çok önemlidir. (Steven Vogel, Cats' Paws and Catapults-Mechanical Worlds of Nature and the People, New York 1998, s. 60-61 ) Şöyle ki, ana damarın kaldırma gücü, bağlantı noktasından uzaklaşıldıkça azalır, ağırlık ise uzaklaşıldığı oranda artar. Örneğin ağır bir kitabı kolunuzu ileri uzatarak tutarsanız, kolunuzun kitabı kaldırma gücünün azaldığını, kitabın kolunuza etki eden ağırlığının ise arttığını hissedebilirsiniz. Ancak, ana damar yaprağın tam ortasından geçtiği için üzerindeki ağırlık eşit miktarda dağılır. (Steven Vogel, Cats' Paws and Catapults-Mechanical Worlds of Nature and the People, New York 1998, s. 60-61 )

Bu sıradan bir olay değildir. Dikkat edin! Hiçbir denge kesinlikle tesadüfen oluşamaz. Bir düşünün, tuğlalar tesadüfen biraraya gelerek sağa sola yıkılmayan bir bina oluşturabilirler mi? Ya da herhangi bir köprü ağırlık merkezi hesaplanmadan inşa edilirse ayakta durabilir mi? Tabi ki, bu iki örnek ve daha bunların benzeri binlerce örnekte olduğu gibi madde tesadüfen biraraya gelerek belli bir düzen ve denge oluşturamaz. Canlı ya da cansız, her varlığı belli bir düzen ile yaratan Allah'tır. Allah, küçücük bir yaprağı da üzerinde milyarlarca insanın rahatlıkla yaşayabileceği kadar büyük olan Dünya'yı da üstün bir tasarım ile yaratmıştır.

Tüm bunların yanı sıra, bir yaprağın yapısal mekanizmasının tasarımında daha pek çok işlevsel mucize vardır. Yaprakların yapısal mekanizmalarını araştıran, Wisconsin Üniversitesi'nden Tom Givnish, bu konuyla ilgili şöyle demektedir:

Eğer bir tek mekanik verimlilik değerlendirmeye alınsaydı bütün yaprakların üçgen olması gerekirdi. (T. J. Givnish, Plant stems: biomechanical adaptation for energy capture and influence on species distributions, s. 3-49 in B. L. Gartner (ed.), Plant Stems: Physiology and Functional Morphology. Chapman and Hall, New York 1995 )

Elbette yaprağın tasarımında sadece mekanik yapı değil, daha birçok kompleks yapı da devreye girmektedir. Bunun bir sonucu olarak yapraklar üçgen değildir, başka özelliklere de sahiptirler. Mesela yaprakların sıralanmasında ortaya çıkan matematiksel hesaplar bunlardan biridir. Yapraklar dizilirken biri diğerine gölge yapmayacak şekilde dizilirler. Givnish bu konuda şunları söylemektedir:

Üçgen yapraklar ince dallar boyunca güneş ışığını verimli olarak toplayacak şekilde dizilemezler, çünkü üçgenler sıkışık olarak biraraya gelemezler. Ancak yaprağın tabanı, uçurtma şeklinde iyice incelirse bir daire veya spiral şeklinde dizilerek birbirlerinin üstünü kaplamazlar. (T. J. Givnish, Plant stems: biomechanical adaptation for energy capture and influence on species distributions. s. 3-49 in B. L. Gartner (ed.), Plant Stems: Physiology and Functional Morphology. Chapman and Hall, New York 1995 )

Yaprakların özel tasarımı, bulundukları iklim koşuluna, hayat sürelerine ve saldırıya uğrama ihtimallerine göre de değişir. Örnek olarak çoban püskülünü alalım: Bu bitki keskin dikenlere sahiptir. Ancak bu dikenler, daha çok bitkinin alt kısmındaki yapraklarda bulunmaktadır. Üst taraftaki yapraklarda genellikle dikenli uca rastlanmaz. Bu tasarımın önemli bir nedeni vardır; alt taraftaki dikenler, yaprakları, yaprak yiyen hayvanlara karşı korumaktadır. Hayvanlar bitkinin üst kısımlarına erişemedikleri için, üst taraftaki yapraklar için böyle bir önlem almaya gerek kalmamıştır. (Bitkiler, Görsel Kitaplar Dorling Kindersley, İtalya, 1996, s.37 ) Birçok bitki, saldırılara karşı koymak için böyle keskin dikenleri kullanır. Dikenli yapraklara, her mevsim yeşil kalan ağaçlarda daha sık rastlanır. Bu yapraklar çok özel bir tasarıma sahiptirler. İğnemsi yapıları sayesinde don olaylarına karşı korunurlar. Ayrıca, topraktaki su donduğu zaman sıvı kaybetmemeleri için özel olarak kalın bir mumsu tabakayla kaplı olarak da yaratılmışlardır.


Diğer yandan, boru çiçeği veya asma gibi tırmanıcı bitkilerin büyük bir kısmı, tabanı kalp şeklinde olan yapraklarla kaplıdır. Bu bitkiler destek olarak kendi gövdelerini değil, başka bitkilerin gövdelerini kullanırlar. Tırmanıcı bitkiler, yapraklarını devamlı Güneş'e çevirmek zorundadır. Ancak, sarıldıkları bitki üstten gelen ışığı engelleyeceği için yaprak, aynı seviyede kalmak yerine bitki sapına en uygun açıya doğru yer değiştirir, böyle bir durumda yapraklar yüzlerini Güneş'in geldiği yöne doğru çevirirler.

Yapraklardaki bir diğer tasarım mucizesi de rüzgarlı günlerde fark edilir. Bilindiği gibi bitkilerin yaprak yüzeyi genellikle geniş olur. Bu onların güneş enerjisini daha fazla alabilmeleri içindir. Ancak, şiddetli bir rüzgar ya da fırtına, bu geniş yüzeyler üzerinde yelken etkisi yaparak bitkinin savrulmasına ve parçalanmasına yol açabilir. Ancak bunların hiçbiri olmaz. Çünkü, yaprağın yapısal özellikleri, rüzgarın etkisini azaltacak şekilde yaratılmıştır. Bitkide iskelet görevi gören selüloz ve lif gibi dokular büyük bir esneme yeteneğine sahiptirler. Ayrıca yapraklar bitkinin uzama yönünde gelişirler. Bu özellikler bitkinin rüzgarın yıkıcı etkisinden korunmasına yardımcı olur. Çünkü bu sayede yaprak rüzgar yönünde eğilebilir. (Steven Vogel, Cats' Paws and Catapults-Mechanical Worlds of Nature and the People, New York 1998, s. 94-95 )

Yaprakları rüzgardan koruyan ikinci bir özellik ise, rüzgarın şiddeti arttıkça yaprağın içeri doğru katlanabilmesidir. Bu sayede yaprak, rüzgarın içinden aktığı, koni şeklinde aerodinamik bir yapı oluşturur. Dahası, yapraklar bu aerodinamik yapının rüzgara karşı gücünü artırmak için toplu olarak birbirlerinin içine geçebilirler. Yani bir dal boyunca çıkan yapraklar rüzgar yönünde eğildiklerinde bir sonraki yaprağı örtecek şekilde kapanırlar. (Steven Vogel, Cats' Paws and Catapults-Mechanical Worlds of Nature and the People, New York 1998, s. 94-95 )

Bitkilerdeki tasarım mucizesi, karadakilerle sınırlı değildir. Karadaki bitkilerin rüzgara karşı koyacak şekilde tasarlanması gibi sudaki bitkiler de akıntının etkisini en aza indirecek şekilde tasarlanmışlardır. Suda akıntının rüzgara benzeyen bir etkisi vardır. Ancak, yosun gibi deniz altı bitkileri, dalgaların ve akıntıların gücüne, sahip oldukları özel tasarım sayesinde karşı koymakta zorlanmazlar. Bu bitkilerin karadakiler gibi kalın odunsu gövdeleri yoktur. Ama kayalara yapışan kökleri çok sağlamdır ve esnek gövdeleri ile dinamik yaprakları sayesinde dengelerini akıntının şiddetine göre ayarlayabilirler. Eğer dış etki dayanılmaz bir orana gelirse bitki ilk önce yaşlı yaprakları feda eder. Bu büyük yapraklar gittiğinde rüzgara veya akıntıya olan direnç azalır ve bitkinin daha fazla dayanmasına imkan tanır. (Steven Vogel, Cats' Paws and Catapults-Mechanical Worlds of Nature and the People, New York 1998, s. 94-95 )

Sonuç olarak, her bitkinin yapısal özellikleri bir diğerinkinden farklıdır. Bitkiler bir yandan fotosentez yaparak oksijen ve besin üretir, diğer yandan da sahip oldukları çeşitli özelliklerle, belirli görevleri yerine getirirler. Bu özel tasarımları sayesinde, bazı bitki yaprakları su ve besin depo ederken, bazıları dikensi yapılarıyla savunma yapabilirler, başka nesnelere sarılıp tutunabilirler, üreme yapabilirler ya da karmaşık tuzaklarla böcek gibi ufak hayvanları yakalayarak beslenebilirler. Bu yüzden hangi bitkiyi incelersek inceleyelim, birçok olağanüstü özelliğe sahip olduklarını görür, böylece, bitkilerin yaratılışındaki sonsuz ilim ve sanata şahit oluruz.

Çöl Sıcağından Etkilenmeyen Yapraklar

Çöl deyince aklımıza hiçbir canlının kolay kolay yaşayamayacağı bir ortam gelir. Gerçekten de çölde yaşayan canlıların sayısı oldukça azdır. Ancak bu zor koşullara rağmen çöl ortamında da hiç aklımıza gelmeyecek mucizelerle karşılaşırız. Bu kurak ortama daha yakından baktığımızda çeşitli özelliklere sahip bitkiler dikkatimizi çeker. Bu bitkiler, özel tasarımları ve farklı çeşitleriyle çok zor koşullarda rahatça yaşayabilmektedirler. Onlar bu iklim koşulları için özel olarak yaratılmış birer mucizedirler.

Çöl bitkileri, aşırı sıcakla ve susuzlukla başa çıkmak için iki yola başvururlar. Birincisi, sahip oldukları dayanıklı yapıyı kullanmak, ikincisi de uykuda kalmaktır. İlginç yapıları ve özel tasarımları sayesinde kurak iklimlerden zarar görmeyen bu bitkilerde yaprak; hem gövde, hem fotosentez organı, hem bir besin ve su deposu hem de kalın yapısıyla bir savunma organıdır. ( http://www.desertusa.com/du%5Fplantsurv.html )

Bazı depo görevi gören yapraklar ise etrafta bulunan kayaları taklit eden yapılarıyla birer kamuflaj uzmanıdırlar. Çeşitli hayvanların kamuflaj yapması sık karşılaştığımız mucizelerden biridir. (http://botany.about.com/science/botany/library/weekly/aa022900b.htm ) Ancak bir bitkinin kamuflaj yapması fazla alışık olmadığımız bir durumdur. Çevresindeki kayaları taklit edebilen bir bitkinin hangi özelliklere sahip olması gerektiğini düşünürsek, ne kadar hayret verici bir olayla karşı karşıya olduğumuzu daha iyi anlayabiliriz. Herşeyden önce bu bitkinin, çöl ortamını çok iyi bilmesi, çevre koşullarından haberdar olması gerekir. Buna göre etraftaki bazı hayvanlardan kurtulmak ve aynı zamanda aşırı sıcaklara karşı koymak için belirli bir şekil ve savunma sistemi planlamalıdır. Sonuç olarak kayaların kendisi için en ideal model olduğuna karar vermelidir. Kendini kayalara benzetirse göze batmayacağını ve taş gibi hacimli bir yapının depo görevini rahatça yerine getirebileceğini düşünmeli ve bütün kimyasal yapısını bu kararına göre değiştirmelidir. Ne bir akla, ne bir şuura, ne bir göze sahip olmayan bitkilerin, kendileri için böyle hayati önemi olan kararlar alamayacakları ve bu kararlarını uygulayamayacakları çok açıktır. Peki, bitkileri bulundukları ortam için en uygun yapıya ve şekle kavuşturan nedir? Tüm canlıların tesadüfler sonucunda meydana geldiğini iddia eden evrimciler, kaya taklidi yapan çöl bitkilerinin de, bu özelliğe tesadüfen sahip olduklarını iddia ederler. Bu iddiaları yukarıda anlatılan senaryodan çok daha mantıksızdır. Tesadüfen meydana gelen hangi olay, bir bitkiye kusursuz bir taklit yeteneği ve çöl sıcağında en çok ihtiyacı olan su deposunu kazandırabilir? Bu bitkileri tüm bu özellikleri ile yaratanın üstün bir ilim ve akıl sahibi olan Allah olduğu çok açıktır.

Çöl bitkilerinin su ve besin maddelerini depo edecek şekilde tasarlanmış olan depo yaprakları, dam koruğu (Sedum) bitkisinde olduğu gibi silindir şeklinde veya makas otunda (Carpobrotus) olduğu gibi prizma şeklinde olabilir. Kurak bölgelerde yaşayan bu bitkiler su depolama özelliklerinden dolayı taze bir görünüme sahiptirler. Su, gövde ya da yapraklarda geniş, ince duvarlı hücrelerde korunmaktadır. Bu yaprakların kalın üst tabakası su kaybını azaltır. Çöl bitkilerinin kusursuz tasarımlarının bir başka özelliği ise küre şeklinde olmalarıdır. Çünkü küre, en küçük yüzey alanına sahip olması nedeniyle en etkili su depolama şeklidir. Çöl bitkilerinin kalın gövdeleri, küre şekilleri ve gündüzleri kapalı, geceleri açık olan gözenekleri, buharlaşma ile su kaybını azaltan bir yapı meydana getirir. (http://www.botany.hawaii.edu/faculty/webb/BOT311/Leaves/LeafShape-1.htm, http://botany.about.com/science/botany/library/weekly/aa020498.htm )

Her bitki suyu farklı bölümlerinde depo eder. Örneğin, Yüzyıl bitkileri yapraklarında, gece açan Cereus bitkisi yeraltındaki soğanında, kaktüs ise tombul gövdesinde su depolar. Sabır otu gibi bitkiler ise nadir olarak yağan yağmurları yakalamak için oluk şekilli yapraklarını açık tutarlar. Bunun tam tersine Sarracenia minor gibi yağışlı bölgelerde bulunan bitkilerin yaprakları, aşırı yağmurdan korunmak için şemsiye gibidir. Her bitkinin bulunduğu koşullara uygun bir şekle sahip olması, Allah'ın kusursuz yaratışının bir göstergesidir.

Kaktüsler ne silindir ne de küre biçimine sahiptirler. Yüzeyleri düzdür. Neredeyse hepsinin uzunlamasına çizgileri ya da yüzeylerinde çok sayıda dikenimsi çıkıntıları vardır. Bu bitkiler, çizgili yüzeyleri içlerinde depo edilen suyun miktarına göre daralma ve gevşeme özelliğine sahiptir. Kaktüs ısıyı yayabilen, su dolu gövdesini hayvanlardan koruyan ve dikleşen iğnelere sahiptir. Mumlu üst tabaka, sıcağın bitkinin içine işlemesini azaltarak bitkiyi korur. Ayrıca bu bitkilerin renkleri solgun ve parlaktır. Böylece üzerlerine düşen ışının çoğunu yansıtırlar; bazıları da güneş ışığını yansıtacak beyaz tüylerle kaplanmıştır. Her insan mutlaka bir kaktüs görmüştür. Ancak, kaktüse ait özelliklerin estetik dışında, birçok amaca yönelik olarak yaratılmış olması büyük bir mucizedir. Kaktüsün dikenlerinden üzerindeki beyaz tüylere kadar her bir parçasında bir plan, tasarım ve amaç vardır. Tüm bunlar kaktüslerin tesadüfen meydana gelmiş bitkiler olamayacağını, üstün bir akıl tarafından tasarlanarak yaratıldıklarını gösteren önemli delillerdir.

Bu bitkilerin bazı türleri, özellikle "pencere yaprağı" bitkisi tüm gövdesini toprağın altına gömer ve sadece yaprak uçlarını dış yüzeye çıkarıp gösterir. Yaprak uçları saydamdır ancak yaprak uçlarının biraz içeri tarafında yeşil fotosentez yapan hücreler bulunur. İnce çizgiler şeklinde dizilmiş olan bu hücreler pencere denilen yaprak uçlarından giren ışığı yakalayıp fotosentez işlemi için kullanırlar. (Kingsley R.Stern, Introduction Plant Biology, Wm.C.Brown Publisher, USA, 1991, s.110 ) Bu çok özel tasarımları sonucunda su kaybını büyük miktarda azaltan ve toprağın altında kalarak kızgın güneşten kurtulan bitki, birçok canlının kısa bir süre bile dayanamadığı çöl sıcaklarında hiç sıkıntı duymadan yaşar. Çölde yaşayan bitkilerin özellikleri bunlarla da sınırlı değildir.

Çöl bitkileri, birçok özelliklerinin yanı sıra susuzluğa da son derece dayanıklı şekilde yaratılmışlardır. Örneğin Amerikan cüce sedir ağacı Peucephyllum ve geceleri biraz nem alıp aşırı kurak durumlarda bile yeşil kalabilen Capparis spinosa bitkisi susuzluğa tamamen dayanabilenlerdendir. Birçok çalı ve ağaç da kuraklığa karşı dayanıklıdır; çünkü dayanıklı yaprakları çeşitli özelliklere sahiptir. Örneğin bazıları küçük yapraklara sahiptir. Bunlar iğne ya da buket şeklindedir; küçük boyutları sayesinde Güneş'in sıcaklığına daha az yüzey alanı maruz kalır. (http://www.support.net/Medit-Plants/plants/Capparis.spinosa.html; http://waynesword.palomar.edu/pljuly98.htm )

Bazı kısa ömürlü bitkiler ise, yapraklarının sadece bir kenarında, genellikle üst kısımda, gözeneklere sahiptirler. Bu tasarım, özellikle rüzgarın yoğun olduğu koşullarda buharlaşma ile su kaybını önler. Bazı yaprakların her iki kısmında da gözenekler vardır; özellikle etrafta sis olduğu zamanlarda bu gözeneklerle havadan nem alırlar. Bazı bitkilerde özellikle Manzanitanın yaprakları dik durabilecekleri şekilde desteklenmişlerdir. Böylelikle yüzey kısımları Güneş'e daha az maruz kalır ve daha az su kaybı olur. Kaktüsler gibi yaprakları olmayan bitkilerden biri olan Paloverde de fotosentezi gövdesi ile yapar. Çünkü çöl ortamında fazla sayıda yaprağa sahip olmak daha fazla suyun buharlaşması anlamına gelmektedir. Görüldüğü gibi çöl ortamına dayanıklı olan bitkiler, birçok farklı özelliklere sahiptirler. Her birinin çöl sıcağına karşı aldığı benzersiz bir önlem vardır. Bitkilerin birbirlerinden farklı olarak, ayrı ayrı bu önemleri alamayacakları açıktır. Çünkü bitkilerin bunun için gerekli olan bilinç, akıl ve bilgi gibi özellikleri bulunmamaktadır. Her bitkiyi, bulunduğu ortama en uygun ve benzersiz özelliklerle yaratan Allah'tır.

Çöl Bitkilerinin Uykuda Kalma Yöntemi

Buraya kadar özel yapıları ile kuraklığa ve susuzluğa dayanabilen bitkilerden örnekler verildi. Ancak çöl ortamına dayanıklılık konusunda, bir de en başta söz edilen ikinci bir yöntem vardır: "Uykuda kalma"

İşte bu ikinci yöntemi uygulayarak uykuya yatanlar "efemeral" bitkiler olarak bilinmektedir. Genellikle bir sene yaşayan ve kuraklık durumlarında tohum halinde uykuda kalarak susuzluktan kurtulan bu bitkiler, yağmurdan sonra çok çabuk bir şekilde tohumlarını açıp yeşillenirler. Ve fideleri çok hızlı bir şekilde büyür. Çiçeklenme çok kısa bir sürede oluşur ve böylece bitki, tohumdan tohum üretme aşamasına sadece birkaç hafta içinde geçebilir.

Çölde yağmur dengesizdir, bu yüzden efemerallerin eğer tüm tohumları tek bir yağmur ile yeşillense ve sonra birden gelen bir kuraklık ile ölseler, nesilleri tükenebilirdi. Ama bu bitkilerin çoğu, sadece büyük miktarda yağmur aldıktan sonra tohumlarının yeşillenmesini sağlayan mekanizmalara sahiptir. Bu bitkiler "tohum polimorfizmi" adı verilen ve tohumlarının yeşillenme zamanını farklılaştırabilen bir özelliğe sahiptirler. Ek olarak tohumlarda da yeşillenmeyi engelleyici bir madde vardır. Tohuma ilk defa su ulaştığında, onun yüzeye çıkma aşaması tamamlanır. Ancak tohumun yeşillenebilmesi için bu koruyucu maddenin etkisiz hale gelmesi gerekir. Bu işlem ise tohumun ikinci defa suyla buluşmasıyla meydana gelir. Eğer ikinci defa su gelmezse yani yağmur yağmazsa tohum filizlenmez. Bu nedenle tohumlar ıslanmak için iki evreye ihtiyaç duyar; ilki tohumların yüzeye çıkmasına neden olur, ikincisi de yenilenmeyi engelleyici maddeyi giderir ve ancak bu engelleyici maddenin gitmesinden sonra yeşillenme meydana gelir.

Diğer efemerallerin tohumları, örneğin "acı kavun" cinsinin tohumları sadece karanlıkta yeşillenir. Bir seri ıslanma ve kurumanın ardından tohumun dış yüzeyi değişir ve oksijenin embriyoya serbest bir biçimde geçişini sağlar. Gerekli olan bu unsurların kombinasyonu, tohumun sadece gömüldükten ve defalarca yağmur gördükten sonra yeşillenmesine neden olur.

Bu bitkilerin oluşumunda kusursuz bir tasarım, plan ve hesap vardır. Herşey, her aşaması ile önceden belirlenmiştir. Tohumların ve filizlerin yok olmamaları için olası tüm şartlara uygun olarak tüm önlemler alınmıştır. Peki efemeral bitkilerinin oluşabilmesi için bu sistemi önceden belirleyen ve bu bitkileri içinde bulunduğu koşullara en uygun şekilde tasarlayan akıl ve ilim kime aittir? Bitkinin hücrelerine mi? Tohumun kendisine mi? Yoksa bu kusursuz ve eksiksiz sistem tesadüfen mi meydana gelmiştir? Tüm bu soruların mantıksızlığı ortadadır. Çevre koşullarına en uygun özelliklere sahip olan bu bitkiler alemlerin Rabbi olan Allah'ın üstün yaratışının eseridir.

Çöl bitkilerinin bir diğer grubu da kuraklıkta yapraklarını döken bitkilerdir. Bu bitkiler su kaynağı azalınca hemen küçük yapraklarını dökerler. Bunlara bir örnek Ocotillo bitkisidir. Bu bitki kuraklık uykusu haline girer ve yağmur düşene kadar bu halde kalır. Yağmur düştüğünde hemen bir dizi yeni yaprak yetiştirmeye başlar. Bazı çalılarda da bu özellik vardır; ama uykuya yatmazlar. Çünkü su desteği artana kadar özel dokularında depolanmış su ve besinlerle yaşayabilecek kadar dayanırlar. Bu dokular "rizom" adı verilen, toprak altında yatay olarak gelişen ve uzun süre yaşayan gövdelerdir. Süsen, Manisa lalesi, Ayrık otu gibi bitkilerin bu tür gövdeleri vardır. (http://www.desertusa.com/du%5Fplantsurv.html, http://www.desertusa.com/nov96/du_ocotillo.html )

Buraya kadar incelediğimiz çöl bitkilerine topluca baktığımızda ortaya çok etkileyici bir manzara çıkmaktadır. Bazı bitkiler çölde yaşayabilmeleri için özel sistemler ve yapılarla donatılmışlardır. Çöl bitkileri su depolar, kamuflaj yapar ya da uykuya yatarlar. Bazıları da çeşitli kimyasal yöntemlerle tohumlarının yeşillenmesini engeller. Görüldüğü gibi çöl gibi her türlü mahrumiyetin ve güçlüğün hakim olduğu bir ortamda bile çok sayıda bitki çeşidi ve sıcağa karşı korunma yöntemiyle karşılaşırız. İnsanların ıssız sandığı bir ortamdaki bu bitkiler, üstün tasarımlarıyla Allah'ın sonsuz ilmini ve sanatını bir kez daha göstermektedir.